IPv6

A short introduction to IPv6

Prepared by:

William Zereneh

1

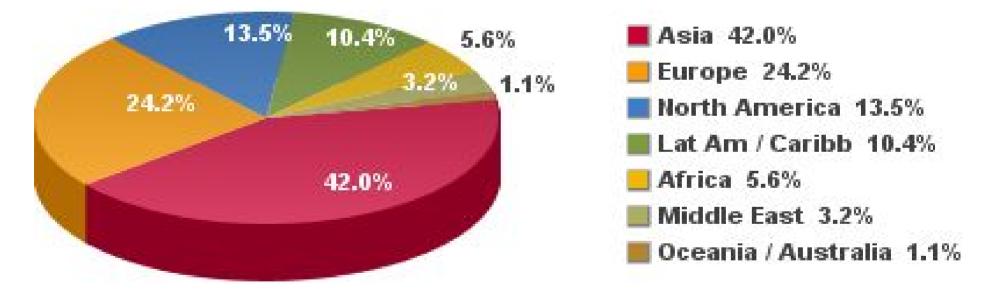
Agenda

- Do we really need IPv6?
 - A bit of history
 - New features
 - Why do we need IPv6
- IPv6 Addressing
 - Address space
 - Types, Notation and Prefix
- IPv6 Structure
 - Header structure
 - Fields in header
 - Extension Headers
- Benefits (conclusion)

A bit of history...

- IETF began developing IPv6 early 1990
- RFC 1752 "The recommendation for IP Next Generation Protocol"
- IESG approved IPv6 recommendation, proposed Standard on Nov. 17, 1994
- RFC 1883, "Internet Protocol, Version 6 (IPv6) Specification," published in 1995
- IPv6 protocols became an IETF Draft Standard on August 10, 1998
- Finally RFC 2460 published to obsolete RFC 1883

Why do we need IPv6...


 DoD heavily involved in the creation of Internet gets to keep most of it!

- North America controls ~57% of IPv4 address space
- The rest of world has the remaining 43% of IPv4 addresses space

 The point is: ~5% of the world controls ~57% of IPv4 address space

• Given the growth of Internet users throughout the world; IPv4 is not enough.

Internet Users in the World Distribution by World Regions - 2010

Source: Internet World Stats - www.internetworldstats.com/stats.htm Basis: 1,966,514,816 Internet users on June 30, 2010 Copyright © 2010, Miniwatts Marketing Group

New features

- Extended address space; from 32 bits to 128 bits
- Auto-configuration; Devices ask for network prefix, use its MAC address to create a valid global IP
- Simpler header format; fixed length, 40 bytes: two 16 bytes for source/Dest address and 8 bytes for others

 Improved support for options; Unlike IPv4, IPv6 carries options in extension headers and only inserted as needed

 Extensions per base specification describes six headers: Hop-by-Hop Options, Routing, Fragment, Destination Options, Authentication and Encrypted Security Payload

Why do we need IPv6... Verdict

- To accommodate the growth of Internet users
- To accommodate the need for consumer electronics connectivity requirements
- The growth of wireless industries demand more IPs than IPv4 can ever afford.

 The automotive industry will be utilizing ~20 IP addresses per vehicle

 To connect all Things; The Internet of Things/Everythings

Address Space

 IPv6 addressing architecture is defined in RFC 4291 which obsoletes RFC 3513

- 128-bit address with a max of 2^128 addresses available; that is 340-undecillion
- IPv6 allows for 2^45 network IDs;

35,184,372,088,832 with a /48 prefix (missing three bits are 001 to signify global unicast addresses)

 Each of these networks can be divided into 2^16 subnets using remaining 16 bits of prefix

IPv6 Address categories

- Unicast; One-to-one communication
 - Global unicast; prefix: 2000::/3
 - Link-local unicast; prefix: fe80::/10
 - Unique Local Address; prefix fc00::/7
- Multicast; One-to-many communication
 Prefix: FF00::/8
- Anycast; An address configured in multiple locations

Address Notation

- IPv6 address is 128 bits (16 bytes), divided into eight 16-bit hex blocks separated by colons 2001:0DB8:0000:0000:0202:B3FF:FE1E:8329
- Leading zeros in a 16-bit block can be skipped 2001:DB8:0:0:202:B3FF:FE1E:8329
- Double colon can replace consecutive zeros or leading/trailing zeros
 - 2001:DB8::202:B3FF:FE1E:8329

Note: Double colon can appear ONLY once in an address

Prefix Notation

 The prefix is contained in the leftmost fields of an IPv6 address

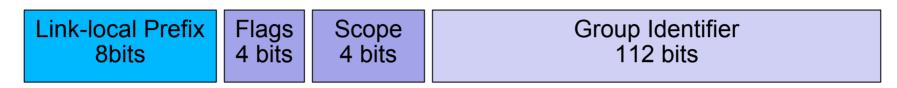
Prefix is used for routing purposes, stated in CIDR notation

- Format of prefix: *prefix/length* 2001:db8:4c4c:0002:0000:0000:0000:0002 2001:db8:4c4c::/48
- Prefix can contain subnet prefix as well 2001:db8:4c4c:2::/64

IPv6 Global Unicast example:

Global Prefix 48 bits	Subnet 16 bits	Interface ID 64 bits			
In Hex:					
2001:4860:800f :0000:		0000:0000:0000:0067			

- 1. IPv6 address written in Hex, divided into eight pairs of two byte block
- 2. Each pair contains four hex digits
- 3. Interface ID can be auto-generated using EUI-64 identifier
- 4. Others: Teredo, Documentation, 6to4


Link-local Unicast address example:

Link-local Prefix 10bits	54 bits	Interface ID 64 bits
In Hex:		
fe80		123a:456b

Characteristics:

- 1. Unique global prefix
- 2. Eliminates address conflicts when connecting private networks
- 3. Independent of ISP
- 4. Can be used for internal communication

Multicast address:

Flags: 0RPT, high order bit zero and reserved R-flag: R=0 Rendezvous point not embedded R-flag: R=1 Rendezvous point embedded RFC 3956

P-flag: P=0 Multicast address without prefix information P-flag: P=1 Multicast address based on network prefix

T-flag: T=0 Well known Multicast address T-flag: T=1 Temporary Multicast address RFC 4291

RFC 3306

Multicast address continued...

Link-loca 8bit		Flags 4 bitsScope 4 bitsGroup Identifier 112 bits						
Scopes:	Value		Description					
	0,3,F	Reserv	ved					
	1	Interfa	ace-local sco	pe				
	2	Link-l	Link-local scope					
	4	Admin	Admin-local scope					
	5	Site-lo	Site-local scope					
	6,7	Unass	Unassigned					
	8 Organizational-local scope							
	9,A,B,C, D	Unass	Unassigned					
	Е	Globa	Global scope					

Selected Well-Known Multicast address

Source: http://www.iana.org/assignments/ipv6-multicast-addresses

Scope	Address	Description
Interface-local scope	FF01:0:0:0:0:0:1	All-nodes address
	FF01:0:0:0:0:0:0:2	All-routers address
Link-local scope	FF02:0:0:0:0:0:1	All-nodes address
	FF02:0:0:0:0:0:0:2	All-routers address
	FF02:0:0:0:0:1:2	All DHCP agents
	FF02:0:0:0:0:0:0:9	RIP routers
	FF02:0:0:0:0:0:0:A	EIGRP routers
	FF02:0:0:0:0:0:0:5	OSPFIGP
	FF02:0:0:0:0:0:0:6	OSPFIGP designated routers
Site-local scope	FF05:0:0:0:0:0:0:2	All-routers address
	FF05:0:0:0:0:1:3	All DHCP servers

Solicited-Node Multicast Address

- Every node must join this multicast address
- Used in Neighbor Discovery
- Specified in RFC 4291
- Resolves MAC address by sending Neighbor Solicitation message to solicited-node multicast address

 Only nodes registered to this multicast address will inspect the packet

- Address formed as follows:
 - Take low-order 24 bits of IPv6 address
 - Append to the well-known prefix
 - Prefix: FF02:0:0:0:1:FF00::/104

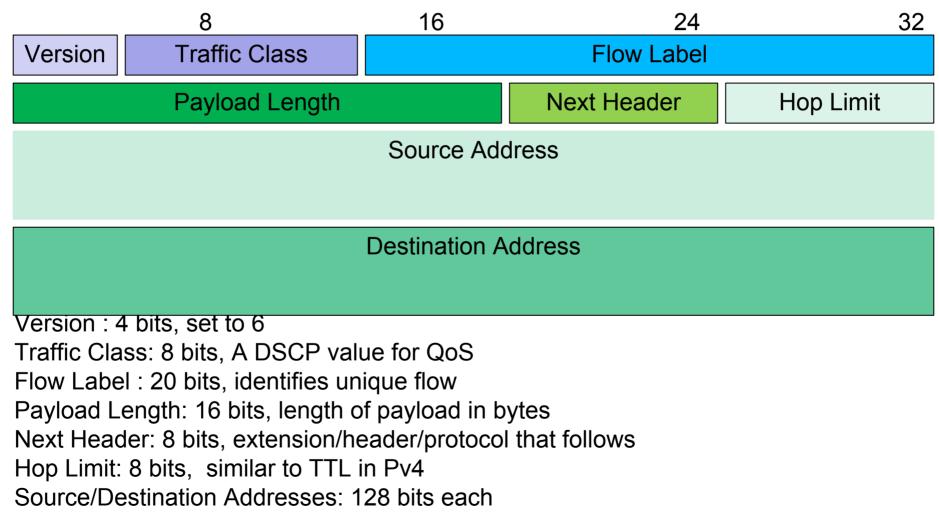
Anycast Address

- Provides redundancy and load balancing where a service is provided by multiple hosts
- Not specific to IPv6; RFC 1546 in 1993
- Mainly created to be used in DNS and HTTP
- No special prefix assigned
- Anycast addresses are part of the Global unicast address range
- Examples: 6to4 relay anycast address; RFC3068 and Mobile IPv6 specifications

IPv6 Types Examples

Prefix	Description	IPv4 Equivalent
::/128	Unspecified: May be used as source address when host is initializing	0.0.0.0
::1/128	Loopback: used when a host is communicating with itself	127.0.0.1
fc00::/7 fdf8:f53b:82e4::54	Unique Local Address (ULA): Reserved for local use; may not be unique and therefore are not routed	10.0.0.0/8 172.16.0.0/12 192.168.0.0/16
fe80::/10 fe80::201:3ff:fe27:1171	Link-Local Address: used on single link, not routed and does not have to be unique	169.254.0.0/16
2001:db8::/32 2001:db8:8:4::3	Documentation: used in examples an documentation, never used as source/des.	192.0.2.0/24 192.51.100.0/24 203.0.113.0/24
2000::/3	Global Unicast: Addresses allocated to sites	141.117.233.251
ff00::/8 Ff01:0:0:0:0:0:0:2	Multicast: To identify multicast groups	224.0.0/24

Extended Unique Identifier (EUI-64)


		0	8	16	24	32 4	-0 4	-8
	48-bit IEEE MAC	00	:01	:03	:27 :	11 :7	71	
	Address	000000	00:000000	1:0000001	1:00100111	:00010001:	01110001	
	<u>) 8</u>		16 2	24 ?	32 41	<u>, 4</u>	3.50	<u>64</u>
1.	00000000	0000001	00000011			00100111	00010001	01110001
2.	0000000	00000001	00000011	11111111	11111110	00100111	00010001	01110001
3.	00000010	0000001	00000011	11111111	11111110	00100111	00010001	01110001
4.	02	01	03	ff	fe	27	11	71
	1. Split MAC address 5. fe80::201:3ff:fe:27:1171							
	2. Insert "FFFE" in the middle							

- 3. Change bit 7 to "1"
- 4. Modified MAC address in EUI-64 in hex
- 5. IPv6 address with EUI-64 modifier

IPv6 header structure specified in RFC2460

- Fixed length of 40 bytes
- Source and Destination field each use 16 bytes (128 bits)
- Only eight bytes are used for general header information
- IPv6 header is much simpler than IPv4 header
- More efficient processing due to simpler header and more flexible in extending the protocol for future needs

IPv6 Protocol header

Fields removed from IPv4

Header Length field removed since IPv6 header is fixed
Identification removed since fragmentation is not done by routers

Flags and Fragment Offset, no more fragmentation by routers

- Who is fragmenting packets now?
- In IPv6, hosts learns Path MTU through Path MTU Discovery
- Hosts use Extension header to handle frags
- Routers along the way do not fragment packets any more!

•Header Checksum, to improve processing speed by routers, no need to check and update header checksums!

Selected IPv6 Next Header (1 byte) Values

Value	Description Source: http://www.iana.org/assignments/protocol-numbers
0	In an IPv4 header: reserved and not used In an IPv6 header: Hop-by-Hop Option Header follows
1	ICMPv4
2	IGMPv4
4	IPv4
6	ТСР
8	EGP
17	UDP
44	Fragmentation header
58	ICMPv6
59	No Next Header for IPv6
60	Destination Options header
88	EIGRP
89	OSPF

IPv6 Extensions

 IPv4 header may contain options that will extend the header from a minimum of 20 bytes up to 60 bytes

- These options were rarely used due to performance issues
- IPv6 solves this performance issue by separating IPv6 header from options
 - Options go in Extension headers and inserted into packet if needed
- The separation of basic header from option makes IPv6 simpler and improves processing time
- An IPv6 packet can contain zero or more Extension header
- Extension header go between IPv6 header and upper-layer headers

 If Extension header is Hop-by-Hop Options header, extension must be the first in the chain of extensions and every node along way must process the packet.

IPv6 Extension Headers

Header	Description
Hop-By-Hop Options (0)	RFC 2460: carries optional information that must be processed by all nodes along the way. Ex. Router Alert, RSVP, Multicast Listener Discovery (MLD)
Routing (43)	RFC 2460: lists one or more nodes that should be used along the way
Fragment (44)	RFC 2460: IPv6 host will use this extension to indicate fragmented packet
Destination Options (60)	RFC 2460: Optional information processed by destination node only, can appear more than once
Authentication Options (AH, 51)	RFC 2402: Used for Header Authentication
Encrypted Security Payload (ESP, 50)	RFC 2406: Used for encrypted data; secure communication

IPv6 Benefits

IPv6	IPv4
Auto-configuration makes network management much simpler	Network must be configured using a DHCP server
Direct addressing due to much bigger address space	Limited number of IPs and widespread of NAT to compensate for lack of IP addresses
340 undecillion or trillion trillion trillion addresses	4.2 billion addresses
New platform for future innovations due to its scalability and flexibility	IPv4 designed as a transport/communication medium and no scalability or flexibility is provided by protocol
Improved security as IPSEC is built in the protocol	Security is an add-on using applications, was not designed to be secure
Simpler more efficient header to promote routing speed (fixed length header)	Inefficient due to extraneous header fields (variable length header)

References

IPv6 Essentials, Silvia Hagen, O'Reilly, May 2006

RFC 4291, "IPv6 Addressing Architecture," 2006

RFC 4193, "Unique Local IPv6 Unicast Addresses," 2005

RFC 1883, "Internet Protocol, Version 6 (IPv6) Specification," 1995

RFC 2460, "Internet Protocol, Version 6 (IPv6) Specification," 1998

IPv6, http://en.wikipedia.org/wiki/IPv6

IPv6 Address, http://en.wikipedia.org/wiki/IPv6_address

Internet Protocol Version 6 Multicast Addresses, http://www.iana. org/assignments/ipv6-multicast-addresses

RFC 1752, "The Recommendation for the IP Next Generation Protocol," 1995

Internet World Stats, http://www.internetworldstats.com/stats.htm