The Euclidean Algorithm P. Danziger

1 Greatest Common Divisor (gcd)

Definition 1 Given two integers a and b, not both zero, the greatest common divisor of a and b, denoted gcd(a,b), is the integer which satisfies the following two properties: 1. $(gcd(a,b) | a) \land (gcd(a,b) | b)$.

2. $\forall a, b, d \in \mathbb{Z}, (d \mid a \land d \mid b) \Rightarrow d \leq gcd(a, b).$

Example 2

- 1. gcd(2,3) = 1, gcd(3,6) = 3, gcd(12, 16) = 4.
- 2. Find gcd(374,110).

 $374 = 2 \cdot 11 \cdot 17,$ $110 = 2 \cdot 5 \cdot 11.$ Thus $gcd(374, 110) = 2 \cdot 11 = 22.$

3. Find gcd(3743323,11012456). ??!

In the second example found the standard factored form of the two numbers, and used this to find the gcd. Is there an easier way? YES: The Euclidean Algorithm.

YES: The Euclidean Algorithm.

Lemma 3 The gcd of any integer with zero is itself.

To Prove: $\forall a \in \mathbb{Z}^+$, gcd(a, 0) = a. Proof: Let $a \in \mathbb{Z}^+$ Clearly $a \mid a$ and $a \mid 0$. Also $\forall d \in \mathbb{Z}$, if $d \mid a$ then $d \leq a$. \Box

Lemma 4 If an integer, d divides two integers a and b, then d | b - a. **To Prove:** $\forall a, b, d \in \mathbb{Z}, (d | a \land d | b) \Rightarrow d | b - a$.

Proof:

Let $a, b, d \in \mathbb{Z}$, with $d \mid a$ and $d \mid b$. $\Rightarrow \exists k, \ell \in \mathbb{Z}$ such that $a = k \cdot d$ and $b = \ell \cdot d$. Let c = b - a. So $c = k \cdot d - \ell \cdot d = (k - \ell) \cdot d$ But $(k - \ell) \in \mathbb{Z}$ So $d \mid c$

(Definition of |)

 $\begin{array}{c} (Algebra) \\ (Closure of \mathbb{Z} under -) \\ (Definition of |) \Box \end{array}$

The Euclidean Algorithm

P. Danziger

Lemma 5 $\forall a \in \mathbb{Z}, b \in \mathbb{Z}^+, q, r \in \mathbb{N}, (a = b \cdot q + r) \Rightarrow gcd(a, b) = gcd(b, r)$

Proof:

}

Let $a \in \mathbb{Z}, b \in \mathbb{Z}^+, q, r \in \mathbb{N}$, with $a = b \cdot q + r$. (Such a q and r exist by the QRT.) Let $d = \gcd(a, b)$. Then $d \mid a$ and $d \mid b$. (Definition of gcd) Since $a = b \cdot q + r$ and d divides both a and b we must have that $d \mid r$ (Lemma 4) Thus $d \mid b$ and $d \mid r$. It remains to show that d is the largest such integer. We know that if $d \mid b$ and $d \mid r$ then $d \mid (bq + r)$. Thus every common divisor of b and r is also a comon divisor of a and b.

But d is the largest common divisor of a and b (by definition of d), thus it must also be the largest divisor of b and r. \Box

Corollary 6 $\forall n \in \mathbb{Z}, m \in \mathbb{Z}^+, gcd(n, m) = gcd(m, n \mod m).$

2 The Euclidean Algorithm for finding gcd(a, b)

Here is a *recursive* algorithm for finding gcd, usually known as the Euclidean Algorithm. A recursive algorithm is one which calls itself.

int gcd(a, b) { If a = b = 0, (no gcd) return ERROR. If a = b return a. If a = 0 return b. If b = 0 return a. If a > b return $gcd(b, a \mod b)$. Else return $gcd(a, b \mod a)$.

Example 7 Trace the execution of the above algorithm in finding gcd(124, 3120)

u = 20	0 = 4	$20 \mod 4 = 0$	1 et um gca(4, 0)
a = 20	h — 1	$20 \mod 4 - 0$	roturn $\operatorname{sed}(4, 0)$
a = 124	b = 20	$124 \mod 20 = 4$	return $gcd(20, 4)$
a = 124	b = 3120	$3120 \mod 124 = 20$	return $gcd(124, 20)$

- 3.8

Example 8 Trace the execution of the above algorithm in finding gcd(220, 124)

a = 4	b = 0	— return 4	
a = 12	b = 4	$12 \bmod 4 = 0$	return $gcd(4, 0)$
a = 28	b = 12	$28 \mod 12 = 4$	return $gcd(12, 4)$
a = 96	b = 28	$96 \mod 28 = 12$	return $gcd(28, 12)$
a = 124	b = 96	$124 \mod 96 = 28$	return $gcd(96, 28)$
a = 124	b = 220	$220 \mod 124 = 96$	return $gcd(124, 96)$