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Abstract
Planning is the fundamental ability of an intelligent agent to
reason about what decisions it should make in a given envi-
ronment to achieve a particular set of goals. Generalized plan-
ning is the task of finding a generalized policy that applies to
a set of planning instances that share a standard model. Ac-
tion Schema Networks (ASNets) is an approach to find gen-
eralized policies for classical planning problems. In this pa-
per, we extend ASNet to work with numeric planning prob-
lems. We use a technique to propositionalize numeric vari-
ables, which converts them from infinite ranges to a finite do-
main, and update the training procedure to use exploration in
order to increase the diversity of states encountered. We also
use a non-generalized numeric planner, Expressive Numeric
Heuristic Search Planner (ENHSP), to teach ASNet to solve
numeric planning problems by learning to mimic the actions
chosen by ENHSP for problem instances. ASNet finds a gen-
eralized policy and weights after training, allowing it to share
these to solve unseen problem instances of the same domain.
We analyze our approach through an extensive experimental
study aimed at evaluating the performance of ASNet on sev-
eral numeric planning domains. The results show that our nu-
meric ASNet can effectively solve problems in many numeric
planning domains.

Introduction
Planning is the process of identifying a sequence of ac-
tions in a given environment to achieve a particular set of
goals. In classical planning problems, the states of the en-
vironment are represented using propositions of finite do-
main variables. However, many complex real-world prob-
lems involving resource consumption or other numeric fea-
tures which cannot adequately be represented using propo-
sitional variables. This led to the introduction of numeric
planning, which does so using numeric variables.

Much of the research on numeric planning has been done
by extending the techniques used for classical planning to
apply to numeric problems. This is the approach that we
have used in this paper, as we extend Action Schema Net-
works (ASNet) (Toyer et al. 2018, 2020) — which is a state-
of-the-art approach and the first standard neural network ar-
chitecture designed for generalized classical planning prob-
lems — to work with numeric planning problems.
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Generalized planning is the task of finding a general pol-
icy (i.e. a mapping of states to actions) that is applicable to a
set of planning instances that share a standard model. With
our extension of ASNet, we have built a generalized planner,
which uses neural networks to learn a generalized policy for
numeric planning from training examples.

An ASNet is a neural network which takes in features
corresponding to actions and propositions from a planning
problem and outputs values for each applicable action in the
current state. The main intuition behind ASNet is for the
neural network to learn to mimic the actions chosen by a
non-generalized planner on some training problems for the
given domain. An appropriately-learnt set of weights can
then be used to obtain a generalized policy. In particular,
an ASNet is created for each problem instance of a domain
by sharing neural network weights to solve other problem
instances of the same domain.

In this work, we use a simple approach to convert a nu-
meric planning problem into a classical planning problem.
We do so by grounding the numeric propositions of the prob-
lem by assigning them values from a fixed range of values.
We also enhance the training algorithm to better suit numeric
planning problems. We also add an exploration algorithm, ϵ-
greedy, to the existing training algorithm, allowing ASNet
to take advantage of exploration. We implemented a sys-
tem that uses Expressive Numeric Heuristic Search Planner
(ENHSP) (Scala, Haslum, and Thiébaux 2016) — which is
one of the most popular numeric planners and is based on
heuristic search — for training ASNet as the teacher plan-
ner. We also optimize the training algorithm with action gen-
eration techniques, objective functions, and variations of op-
timizers. We analyze our approach through an extensive ex-
perimental study to evaluate the effectiveness of our plan-
ner. Overall, the results show that our approach is effective
for a wide variety of problems though we can struggle with
problems with large numbers or broad ranges of numeric
variables. We believe this work is particularly relevant for
those involved in heuristic search, as it expands the scope of
heuristic-search-based planners to encompass the generation
of generalized policies for numeric planning problems.

Background
In this section, we provide background on classical, nu-
meric, and generalized planning and describe the Action



Schema Network approach, which forms the basis of our
system.

Classical, Numeric, and Generalized Planning
Automated Planning involves finding a sequence of actions
that lead to a desired goal from a given initial state of a
problem. This paper is concerned with two types of plan-
ning problems: classical and numeric. In classical planning,
problems are modelled using only propositions (i.e. boolean
variables) called fluents. However, complex real-world prob-
lems often require resources to be assigned, consumed, or
have a cost defined. These features cannot always be repre-
sented using only boolean variables. This has led to the in-
troduction of numeric planning, which allows for numerical
fluents. Solving a numeric planning problem requires reach-
ing a state where both a given set of propositions hold and a
set of numeric constraints are satisfied.

A numeric planning problem can be formally defined as
a tuple P =< Fp, Fn, O, I,G >, where Fp is the set of
boolean propositional variables, Fn is the set of numeric
variables (each with its own domain), O is the set of ac-
tions, I is the initial state, and G is the set of goal condi-
tions. The goal conditions (or action preconditions) can be
either propositional or numeric. A propositional condition
is a positive literal (i.e. requiring that a particular fluent is
true in the corresponding state), while a numeric condition
is defined as c : ξ ▷ 0, where ▷ ∈ {=, ̸=, <,≤,≥, >} is a re-
lational operator, and ξ is an arithmetic expression over the
numeric fluents Fn and the rational numbers Q. For exam-
ple, a condition may require that f1 + 2f2 − 5 < 0 must be
true for fluents f1 and f2.

The actions a ∈ O are defined by a set of preconditions
and effects. The preconditions determine when a is appli-
cable: they include the set of propositions that must be true
in the current state and a set of numeric conditions that the
numeric fluents must satisfy. The effects of an action define
how the fluents change after the action is applied. This in-
cludes which set of propositional fluents change their truth
value and assign new numeric values to some subset of the
numeric variables.

Expressive Numeric Heuristic Search Planner (ENHSP)
(Scala, Haslum, and Thiébaux 2016) is a popular numeric
planner that we use extensively in our system. At its core,
ENHSP is a heuristic forward search planner that can use
a variety of domain-independent heuristic functions and
search techniques to solve numeric planning instances. In
our work, we use ENHSP-20 (Enrico Scala 2020), which is
the latest version of this planner, and we configure it to run
the A∗ algorithm guided by the numeric heuristic opt−hmax

(Scala, Haslum, and Thiébaux 2016). This ensures that any
plan returned by ENHSP is optimal.

To ease the process of modelling, classical planning prob-
lems are typically encoded as sets of lifted propositions, ac-
tion schemas, and objects, in a language such as PDDL (Gar-
rido, Fox, and Long 2002), which are then passed to a plan-
ner. A lifted proposition is a predicate with input parame-
ters, whose value can be one of the given objects (i.e. the
free parameter ?x of the predicate in(?x) may be the ob-
ject roomA). An action schema is a lifted representation of

the actions that allow for input parameters (i.e. the action
move(?p1, ?p2) to move from location ?p1 to ?p2).
Action schemas and lifted propositions can then be ground
by the planner so that it fits the formal definition given
above by computing all valid instantiations that assign ob-
jects to the arguments of proposition and action parameters.
For example, for objects roomA and roomB, we can gen-
erate ground action move(roomA, roomB) which has
in(roomA) as a precondition. Since many numeric vari-
ables can take on infinite possible values, numeric planning
problems can not be grounded. We describe our approach to
this issue below.

Generalized planning is a variant of classical planning in
which the objective is to find a policy that can solve any
problem instance from the same domain (i.e. planning prob-
lems that all share the same action schema and set of lifted
propositions). A policy π is a mapping from a state to a dis-
tribution over the set of actions1. While this is similar to the
objective of reinforcement learning agents, we note the sig-
nificant difference in that generalized planners are also given
domain information about the action schema and fluents in
the domain.

Action Schema Networks
In this work, we consider generalized planning for numeric
planning problems. Our planner is based on ASNets (Toyer
et al. 2020), a neural network based generalized planning ap-
proach for classical planning. Below we describe the struc-
ture of an ASNet and how they are trained.

The Architecture of an ASNet An ASNet takes in fea-
tures about the current state and goal and outputs a probabil-
ity distribution over the actions applicable in that state (i.e.
the network encodes a policy). The general structure can be
seen in Figure 1, which shows that an ASNet consists of
alternating layers of action and proposition modules. Each
module is a single network neuron with one for each propo-
sition and action in the domain. These modules are trained
using a given set of training problems; thus, this approach
assumes that for solving a generalized problem domain, we
are also given a set of problems for this purpose.

Figure 1: ASNet Structure. Image from Toyer et al. 2020.

For each new problem instance, a new ASNet is con-
structed from the previously learned modules. This means
that the weights of the networks for different problems are
shared. This is because, for different problem instances, the
grounded actions and propositions vary, meaning a different

1Some generalized planning systems try to find a generalized
plan, which is a single sequence of actions that can solve any prob-
lem in the domain. We focus on the variant which finds policies in
this work.



network is created specifically using the grounded proposi-
tions and actions in a problem instance. As such, different
modules will often be connected differently in the networks
for different problems.

While we leave a full description of ASNets to the original
paper (Toyer et al. 2020), we briefly describe their structure
and how they are trained here. To do so, we must first de-
fine the notion of relatedness. An action and proposition are
said to be related when the proposition appears in one of the
action’s preconditions or effects.

The input to an ASNet consists of three bit-vectors. The
first vector identifies which of the propositions related to an
action a is true in the current state. The second vector identi-
fies which of the propositions related to a is true in the goal
state. The final part is a single bit indicating whether or not
a can be applied in the current state. These three parts are
computed and given as input to each action module on the
first level.

For every level after the first, the input of each action mod-
ule is the output of modules corresponding to the related
propositions at the previous level. The size of each module’s
output is called the hidden representation size and is typi-
cally set to 16 as in the original ASNet work (Toyer et al.
2020). Thus, if there are 3 related propositions for action a,
it will take in 3 · 16 values. The size of the output of each
module (including the first-level modules but not the last) is
also the hidden representation size. Proposition modules are
defined analogously in that their input is given by the output
of the modules of the related actions in the previous level2.

Finally, the output of each action module in the last level
is a single real value. This output can be viewed as the rela-
tive value of taking the given action, where higher is better.
It can be used in several ways to generate a policy. When
testing the policy of an ASNet, the original paper selects ac-
tions greedily. However, the learning objective for updating
neural network weights assumes that the probability of se-
lecting a given applicable action, namely π(a|s), is given by
taking a softmax over the value of all applicable actions.

Training an ASNet Let us now consider how an ASNet
is trained for classical planning problems. The input to the
training procedure is a set of fluents, an action schema, a
set of training problems Ptrain (i.e. start states and goal
conditions) that use only those fluents, and the number of
epochs to run. The output is a trained set of action and propo-
sition modules. The training begins by generating all ac-
tion and proposition modules and initializing the neural net-
work weights using Xavier initialization (Glorot and Bengio
2010).

Every training problem is used in the following two-
step procedure during every epoch of training. In the first
phase, called exploration phase, the ASNet for a problem
p ∈ Ptrain is generated, and the current policy is used to
generate a sequence of actions of up to N actions (for some

2Because the set of actions applicable may be different for dif-
ferent problems, there is an additional pooling step so that the same
proposition modules can be used across problems. We leave a full
description of this step to the original ASNet paper (Toyer et al.
2020)

hyperparameter N ) that will either solve the problem or not.
This sequence of actions will generate a set of additional
states s0, ..., sN . For each si, a teacher planner is used to
find a plan from si to the goal. This is called a teacher-
rollout. The teacher planner is typically a standard (i.e. non-
generalized) classical planner. Intuitively, the teacher plan-
ner provides plans that the ASNet should mimic, so they will
be used to update the network weights as described below.
In the original ASNet work, Fast Downward (Helmert 2006)
is used as the teacher planner.

The exploration phase is repeated Texplore times, where
Texplore is a hyperparameter. This means that Texplore tra-
jectories per training example are generated per epoch. The
states along each plan generated by the teacher planner are
also added to a state memory buffer M , which is maintained
across epochs. This buffer stores the states along all paths
the teacher planner finds and the action the teacher planner
takes in each.

The state memory M is key for the learning phase of each
epoch of the training procedure. For a given hyperparam-
eter Ttrain, this phase is repeated Ttrain times per epoch.
Each time it is invoked, a minibatch of examples is sampled
from M . This minibatch is then used to update the network’s
weight using a form of imitation learning. More specifically,
the weights are updated to minimize cross-entropy loss be-
tween the network’s policy generated using the softmax over
the outputs of the modules in the last layer. Intuitively, this
encourages the network to increase the probability it selects
the same action as the teacher planner for the states sampled
from the minibatch.

Action Schema Networks for Numeric
Planning

In this section, we explain how we apply ASNets in the con-
text of numeric planning. This includes describing how we
convert a numeric problem to a classical planning problem,
changes to the neural network structures, and updates to the
training procedure.

Propositionalizing a Numeric Problem for ASNets
To allow ASNets to be used for numeric planning prob-
lems, we constructed a propositional approximation of the
numeric fluents. Once that is done, the resulting problem
has only propositional fluents and thus can be handled by
an ASNet. We describe the process for doing so below.

In its original form, ASNet uses a library called MDP-
Sim (Younes et al. 2005) to ground the given problems, but
this library can only handle boolean fluents. As such, we
use ENHSP as part of the process and augment it in order to
construct problems suitable for ASNet. First, we use ENHSP
to extract the given domain’s lifted propositions and action
schema. We also use ENHSP to extract the set of objects
from all the given training problems, as these are assumed
to yield the set of all possible objects in the domain 3.

Next, we propositionalize the numeric variables. Since
numeric variables can take on an infinite number of values,

3This could be extended to take in a set of objects that is a su-
perset of the objects in the problem files if needed.



most of which are not needed for most problems, we identify
a suitable range for each variable, discretize that range, and
set a propositional fluent for each value in this discretization.
That is, for each numeric proposition m ∈ Fn, we create a
set of propositions < p0, p2, ..., pk >, where p0 corresponds
to m taking on the minimum value Min of its range, pk
corresponds to m taking on the maximum value Max of its
range, and for each 0 < i < k, pi corresponds to m taking
on the value Min + i · ∆ where ∆ is a step size hyperpa-
rameter.

In our current system, selecting the range for each nu-
meric variable is done manually by inspecting the do-
main specification and selecting reasonable values. This is
straightforward for most of the standard benchmark do-
mains, as the numeric variables already only take on values
along a grid-like space. While this is currently a limitation
of our system, we believe this process can be effectively au-
tomated using information from plans found by the teacher
planner on the training problems. We leave such an investi-
gation as future work.

Once the numeric fluents have been propositionalized, the
lifted propositions and action schemas are grounded. This
largely follows the existing approach, except the numeric
components of the action preconditions and effects are re-
placed by the disjunction of the sets of the new propositions
that ensure the original conditions are satisfied. For example,
if an action requires that fuel >= 10 in its numeric form,
then the action will be applicable after it is propositional-
ized if fuel_10 is true or fuel_11 is true or fuel_12
is true, etc.

This approach of propositionalizing the numeric problem
allows ASNets to be used directly as originally described.
We have done so in our system, though we have adjusted the
training approach described below. An advantage of this ap-
proach is that if ASNets are improved in the future, they
can just as easily be applied to numeric problems. How-
ever, there are also several disadvantages. The first is that
the resulting classical problem only approximates the orig-
inal numeric problem. While we found this effective for
most benchmarks, this will not extend to all possible prob-
lems. We also found that this greatly increased the number of
propositions related to any action. For example, for the fuel
example above, all of the propositions which may make the
action true are now related to the action. The resulting num-
ber of actions and modules (specifically the propositional
ones) was thus significantly higher than those in standard
classical benchmarks.

The Updated Training Procedure
In this section, we describe how our training procedure dif-
fers from the original ASNet work. The overall approach is
very similar, though with a few key differences. First, at the
end of each epoch, we test the effectiveness of the learned
neural network modules on all problems in the training set
by using the greedy policy to solve each. The training termi-
nates if the resulting ASNet exhibits stability over all of the
problems for 15 consecutive epochs.

The second main difference is in the policy action selec-
tion used to generate trajectories from each training instance

as part of the Explore-Trajectories function. In the original
ASNet work, actions were selected greedily according to
the last-layer output from amongst the applicable actions. In
our work, we also tested selecting actions using an ϵ-greedy
approach (Sutton and Barto 1998). On every step, this ap-
proach will select actions greedily with probability (1 − ϵ),
where ϵ is a hyperparameter, and otherwise selects an action
uniformly at random from amongst the applicable actions.
This was found to improve performance by forcing the plan-
ner to consider a more varied set of states.

The exploration phase consists of the steps explained in
the previous section, with a few additions we will now de-
scribe. The function Explore-Trajectories is performed for
each problem in our training set Ptrain for target-rollouts-
per-epoch number of times. This value refers to how many
trajectories we want to explore in each epoch. For classi-
cal planning problems, target-rollouts-per-epoch was set to
100, i.e. the number of trajectories observed in each epoch
would be 100. Numeric planning problems take much longer
for each problem instance to run, so exploring too many tra-
jectories is not feasible. We have reduced this number to a
lower value as given in the experiments.

Finally, we use the numeric planner ENHSP (Scala,
Haslum, and Thiébaux 2016) to perform the teacher rollout.
In particular, we set ENHSP to use the opt − hmax heuris-
tic, which ensures that all plans it returns are optimal. This
optimal plan is then used to add states to the memory buffer
M as described in the section titled ”Background”.

Implementation
The original ASNet code was developed in Python, us-
ing Tensorflow for neural network operations and training.
ENHSP-20 is written in Java. Thus, we built a bridge using
the Jpype software package to allow the two systems to inter-
act. A string representation of the states and actions are then
passed between ENHSP and ASNet to allow for teacher roll-
out requests and the resulting plans, and also to help ground
the numeric fluents.

Experiments
In this section, we describe several experiments to evaluate
the performance of ASNet on numeric planning domains.
This includes an evaluation of in-sample performance on
training problems and the performance of the policy on un-
seen problems, a look at training and runtime, and an exam-
ination of how well the method scales with problem size.

Experimental Setup
All the experiments were trained and evaluated on a ma-
chine equipped with 64GB of memory and an x86-64 pro-
cessor clocked at 2.2GHz. We used problems from 8 dif-
ferent domains for our evaluation. Gripper-Tray(Kuroiwa,
Shleyfman, and Beck 2022), Gripper-Simple(Kuroiwa, Sh-
leyfman, and Beck 2022), Plant-Watering (Orig.)(Scala,
Haslum, and Thiébaux 2016), Sailing(Orig.)(Scala, Haslum,
and Thiébaux 2016), and Fn-Counters(Scala, Haslum, and
Thiébaux 2016) are standard benchmarks. To further under-
stand our system, we modified 3 of these domains to gen-



erate the following domains— Plant-Watering (Simp.), Sail-
ing (Simp.) and Numerical Gripper — to allow for closer
inspection. The numerical Gripper is a modified version of
the Gripper classical planning domain. In Numerical Grip-
per, instead of navigating through rooms, the robot can move
in a linear path from point 0 to 10. Its objective remains the
same: transporting and retrieving the ball while following
this linear trajectory. The simplification of the domains in-
volved removing some actions and limiting the range of in-
tegers.

We evaluate the quality of policies using several metrics.
These include the learning time, the length of the plans, as
well as the success rate and ideal path rate of the learned
policies. For policy π and problem p, the success rate is the
probability that π will solve p. If π is deterministic, this is
simply 1 if π solves p, and 0 otherwise. If π is stochastic, we
estimate the success rate by sampling plans multiple times
on each problem and recording the rate that solutions are
found.

The ideal path rate of policy π on a single problem p
measures how closely a deterministic policy π mimics the
teacher planner. To calculate this metric, we first use the
teacher planner to generate a solution to p. This will be
a sequence of actions < a0, ..., an−1 > that visits states
< s0, ..., sn >. Next, we use π to generate an action aπi
for each si. The ideal path rate is then given by the number
of times that aπi is equal to ai, divided by n.

To select effective hyperparameters for our system, we
performed a grid search. The number of layers (2), hidden
representation size (16), and non-linear activation function
(ELU(Clevert, Unterthiner, and Hochreiter 2016)) were kept
constant and set the same as in the original ASNet work
(Toyer et al. 2020). The number of epochs for training was
kept at 50, with the trajectory length limit as 100 for both
training and evaluation. The target rollouts per epoch were
kept to 5.

The main grid search was over different values for the
learning rate, optimizer, and dropout hyperparameters. No
single set of hyperparameters was found to be dominant on
all domains, however, the use of the Adam optimizer with
a learning rate of 0.00005 and a dropout of 0.25 on the out-
puts of each layer except the last was effective in most cases.
Thus, we use those values in the remainder of this section.

Training Performance
Figures 2a and 2b show how the success and ideal path rates
progress over time on the given training problems. For suc-
cess rate, Figure 2a shows that in most domains, there is
generally an increasing rate trend. In most cases, the success
rate reached is high, demonstrating that the ASNet is suc-
cessfully able to represent a policy for numeric domains that
can solve the training problems.

A 100% success rate was reached on Fn-Counters, Plant-
Watering (Simp.), Gripper-Simple, and Gripper-Tray. In
these cases, learning was terminated early because the net-
work had stabilized. While a perfect success rate was not
reached in the Sailing (Orig.) and Sailing (Simp.) domains,
our numeric ASNet does very well in the simple sailing do-
main but not the original complex version. Although our
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Figure 2: Success and Ideal Path Rates for All Domains

method does improve over time in this more complex do-
main, it struggles to handle all the problems effectively.

Our system also struggles with the Numerical Gripper do-
main. Our analysis suggests that the system gets stuck in a
local minimum where it perfectly handles 40% of the prob-
lems after the first epoch of training but cannot extend the
policy to handle other problems.

Figure 2b shows that for most of the domains, the ideal
path rate largely stays stagnant in most domains. However,
the domains which saw the success rate increase slowly, gen-
erally also see increases in ideal path rate. Gripper-Tray,
Sailing (Orig.), and Sailing (Simp.) are clear examples of
this behaviour.



Interestingly, Figure 2b shows that even in the four do-
mains with a 100% success rate — namely Fn-Counters,
Plant-Watering (Simp.), Gripper-Simple, and Gripper-Tray
— the ASNet policy is not necessarily mimicking the
teacher planner. Instead, the planner is partially following
the teacher planner, but is finding a policy that is easier to
learn.

Generalizing to New Problems

In our previous experiment, we noticed that one cause of
failure for ASNet was that the standard policy which selects
greedily on the output of the last layer would sometimes get
stuck in loops. In the simplest such case, the policy would
get stuck going back and forth between the same two states.
To remedy this situation, we also tested the ASNet by using a
stochastic policy. This policy corresponds to the learning ob-
jective: the probability of taking an applicable action is given
by the softmax over the output of the last layer of the ASNet.
To estimate the success rate of this policy, we average over
20 runs per problem. In this experiment, for each domain, we
tested on 4 test problems that the trained model had not seen
before for both greedy and stochastic action selection poli-
cies. The size of these test problems was varied with some
problems at the same size as the training and some larger
than the training. As an illustration, in the Gripper (Simp.)
domain, we conducted training with a range of ball quanti-
ties, specifically between 4 and 10. On the other hand, the
test problem instances in the Gripper (Simp.) domain were
diversified by varying the number of balls between 6 and 12.
The results are as shown in Table 1. The table also shows the
success rate of a uniformly random policy as a baseline. The
highest success rate per domain is shown in bold.

We first note that stochastic and greedy solve all the Fn-
counters and Numerical Gripper problems. In the Sailing
and Plant-Watering variants, the stochastic policy did signif-
icantly better than the greedy. As stated above, this was due
to the policy running into loops. We have mainly observed
this in domains such as these four when there are move ac-
tions. This trend of going back and forth between 2 actions
is broken when the stochastic policy is used, allowing our
numeric ASNet to solve the problem instance with a greater
probability.

The greedy policy does perform better in Gripper-Simple
and Gripper-Tray. We believe the reason for this is that the
greedy policy already has a perfect success rate in these do-
mains, so adding stochasticity can only hurt. We note that
this does suggest an interesting approach to find plans in
practice: first, run the greedy policy and then turn to using
a stochastic policy if the greedy policy fails. This will have
the benefit of both approaches.

Finally, we note that the learnt policies are significantly
outperforming the purely random policy in all cases except
Fn-counters in which case all methods have 100% cover-
age. This clearly demonstrates our numeric ASNet is learn-
ing useful information about the domain that can be used to
solve new problems.

Action Selection Policy
Domain Stochastic Greedy Random

Plant-Watering (Original) 0.55 0.00 0.01
Plant-Watering (Simple) 1.00 0.50 0.75
Numerical Gripper 1.00 1.00 0.06
Gripper-Simple 0.98 1.00 0.00
Gripper-Tray 0.34 1.00 0.14
Sailing (Original) 0.48 0.25 0.00
Sailing (Simple) 0.62 0.50 0.20
Fn-Counters 1.00 1.00 1.00

Table 1: Success rate with different policies on unseen prob-
lems.

Scaling Tests Using Fn-Counters
In this section, we study how our numeric ASNet approach
scales to larger problems by focusing on the Fn-counters
domain. In Fn-counters, there are two or more “counters”,
which each take on a positive integer value. The available
actions increment or decrement one of the counters at a time.
Given some initial values for the counters, the objective is to
have the counters take on values in a specific consecutive se-
quence. For example, suppose there are two counters c0 and
c1 with initial values c0 = 3 and c1 = 1. Then a typical goal
would be that (c0 + 1) ≤ c1. For this problem instance, the
optimal plan would be to apply the increment action three
times on the c1 counter. The final value of counter c0 would
be 3 and c1 would be 4. An important property of this do-
main is that if a counter has a value of 0, it cannot be decre-
mented. Similarly, there is a max_int fluent which deter-
mines the maximum value of any counter, at which point it
cannot be incremented.

For this experiment, we set the step size parameter to 1,
but considered different max_int values to test how well
our system scales with an increasing number of possible flu-
ents after the propositionalizing step. In particular, we train
our neural network using five problems of 2 counters each.
The max_int values used were 10, 50, 100, 300, 400, 500,
and 1000. The same hyperparameters were used for all ex-
periments.

Our evaluation showed that when max_int gets too
high, our numeric ASNet fails because it is unable to han-
dle the increase in the number of propositions. In particular,
we found that our approach was unable to handle the prob-
lems for a value of 400 or above. This is because the num-
ber of propositions increases with the size of the problem.
In our numeric ASNet, increasing max_int also increases
the number of propositions related to any action, which can
weaken the signal passed on between layers of the network.

Somewhat surprisingly, we found our system found a sub-
optimal policy for max_int values of 10 and 50, but an op-
timal policy for 100 and 300. To see what is learned when
max_int is set to 10, consider the problem instance given
above where c0 = 3 and c1 = 1, which can be solved by
simply incrementing c1 three times. In contrast, the policy
ASNet learns increments c0 seven times (so that c0 is equal
to max_int), then increments c1 nine times (so that c1 is



equal to max_int), then finally decrements c0 once. The
network uses this policy of incrementing both counters to the
max_int value, regardless of the start state. Notice that this
means that policy is pushing towards a specific goal state in
doing so (namely c0 = 9 and c1 = 10), instead of any other
goal state with (c0 + 1) ≤ c1.

Our hypothesis is that this policy is easier to find and rep-
resent using the ASNet architecture, but that it is in a lo-
cal minimum in weight space that the learning is unable to
overcome even given additional time. However, due to an-
other hyperparameter, trajectory length limit, this policy is
not valid when max_int is 100 or 300. This hyperparam-
eter limits the path length of any planning instance being
considered during training and is set to 100 by default. How-
ever, the suboptimal policy takes more than 100 steps when
max_int is 100 or 300, so the ASNet is forced to find a
better policy. In this case, it finds the optimal one.

We note that this means that the ASNet is capable of
representing and finding the optimal policy for the smaller
max_int values, even though it doesn’t. It also suggests
that this approach is susceptible to getting stuck in local min-
ima in policy space. We believe that finding ways to combat
this issue is an interesting possible area for future work.

Training and Run-Time Performance
We ran an experiment to compare the time it takes to train
all domains to better understand how domain complexity af-
fects training time. To do so, We trained our numeric AS-
Net on two problem instances of each domain. The hyper-
parameters were also kept constant across domains. The ex-
periment shows that Fn-counters, with max_int of 10 and
thus a total of 20 numeric propositions, is the fastest to train,
with a time of 28sec. In contrast, Sailing(Orig.) is the slow-
est to train, with a total of 2800 numeric propositions and a
time of 812sec. While factors like the time needed to per-
form teacher rollouts also matters, these results suggest that
training time is typically proportional to the number of nu-
meric propositions in that domain.

We also experimented with evaluating the time it takes to
execute a trained model to find a plan for unseen problem
instances. Of note, a significant portion of this runtime is in
the construction of the ASNet from the trained modules. To
see this, we compared the time needed to find a single plan to
a new problem to the average time per plan if we run ASNet
20 times on the same problem once it has been constructed.
The results are shown in Figure 3a, which shows the first
plan takes much longer to generate than the subsequent plans
since the ASNet does not need to be recreated each time.

In the next experiment, we compare the time it takes to
solve ten new unseen problem instances using a trained nu-
meric ASNet compared to ENHSP. The unseen problem in-
stances would have different initial state values for the ob-
jects. These new problems are generated with random inte-
gers for the numeric propositions. Figure 3b shows the re-
sults of this comparison between ENHSP and the average of
over 20 runs per problem when using ASNet. The standard
deviation over the problems is also shown in the figure.

The results show that in most cases, ENHSP takes more
than double the time to find a plan. However, we note that av-

eraging over 20 runs lessens the impact on the network cre-
ation time. When that is included, the runtime between the
two planners is comparable. However, the difference when
considering the average time over 20 runs demonstrates the
potential in generalized planners of this type, as there are
significant runtime improvement opportunities to be made
simply by improving the process of network creation. It also
demonstrates that ASNet can be used quickly and effectively
to generate a set of different plans for the same problem (by
using stochastic action selection), whereas ENHSP will re-
quire significant changes, likely without the runtime bene-
fits, to be used in that way.

Related Work
Significant research has been conducted on numeric plan-
ners (Scala, Haslum, and Thiébaux 2016; Hoffmann 2003)
and generalized planners (Toyer et al. 2020). However, there
has been limited exploration of generalized planners specifi-
cally designed for numeric problems. One notable exception
is the generalized linear integer numeric planner (GLINP)
(Lin et al. 2022). GLINP requires that all numeric variables
are integer ones. A similar approach is taken by Qualitative
Numeric Planning (QNP) (Srivastava, Immerman, and Zil-
berstein 2011) which requires that the effects of actions de-
crease or increase the value of some variables by an unspec-
ified amount. Our approach shares similarities with GLINP
and QNP in that the values of our numeric propositions vary
by a consistent step size.

The focus of these systems is on finding more tractable
subsets of the generalized numeric planning problem. To this
end, QNP only considers goal conditions of the form v > 0
or v = 0 where v is a numeric variable. GLINP also fo-
cuses on the case where the goal is to decrease the value
of the numeric variables in the problem. Since these restric-
tions do not apply to our approach, we did not consider these
methods directly comparable. Furthermore, our approach is
the first to incorporate neural network-based policy learning
into the domain of generalized numeric planning.

Conclusion
In this paper, we use a grounding process that takes the nu-
meric values possible for each variable and converts it into
a fixed range of values. This method propositionalizes the
numeric values and structures them in a way that can be in-
put to an ASNet. The training of ASNet has been enhanced
by adding the ϵ-greedy method for more variability in the
paths, leading to an improved ability to solve unseen prob-
lems. We have also added ENHSP as the teacher planner,
which provides the ASNet with guidance on how to solve
numeric planning problems. The plan returned by ENHSP is
used to calculate the plan cost and assign state values which
are then used in the learning phase of training to improve
the policy of our numeric ASNet. The result is the first gen-
eralized planner for numeric planning problems which uses
neural networks to learn a generalized policy from training
examples.

Our experiments show that applying a trained ASNet on
new problem instances from a domain and executing the
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Figure 3: An analysis of the time to generate plans using
ASNet and ENHSP.

same problem instances using the heuristic search planner,
ENHSP, results in much faster execution using our numeric
ASNet. This is because ASNet has already learned the pol-
icy and only needs to apply that to the problem instances.
In contrast, the baseline planner cannot transfer the learnt
knowledge from one problem instance to another and so
ends up having to re-evaluate every problem instance from
scratch. This demonstrates that the promise of generalized
planning carries over to the numeric case.

Human pre-processing for the grounding technique is nec-
essary when assigning bounds to the variables which is a
current limitation of this method. This method has been
shown to significantly increase the input size when the range
of the numeric variables increases or the step size decreases.
This increase affects the performance of our numeric ASNet
and can potentially lead to a memory problem if the numeric
values are too large to store and handle. However, we view
our work as an important first step to bridging the gap be-
tween generalized numeric planning and neural networks.
In future work, we aim to improve the network construc-
tion process and develop an approach that directly takes the
numeric values of inputs to the ASNet, thus avoiding the
current system’s limitations.
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