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Abstract. Goal models have found important applications in Requirements En-
gineering as models that relate stakeholder requirements with system or human
tasks needed to fulfill them. Often, such task specifications constitute rather ide-
alized plans for requirements fulfillment, where task execution always succeeds.
In reality, however, there is always uncertainty as to whether a specification
can/will actually be executed as planned. In this paper, we introduce the concept
of decision-theoretic goals in order to represent and reason about both uncertainty
and preferential utility in goal models. Thus, goal models are extended to express
probabilistic effects of actions and also capture the utility of each effect with
respect to stakeholder priorities. Further, using a state-of-the-art reasoning tool,
analysts can find optimal courses of actions/plans for fulfilling stakeholder goals
while investigating the risks of those plans. The technique is applied in a real-
world meeting scheduling problem, as well as the London Ambulance Service
case study.

Keywords: Information Systems Engineering, Goal Modeling, DT-Golog, De-
cision Theory

1 Introduction

Goal-Oriented Requirements Engineering is founded on the premise that functional re-
quirements for information systems can be derived from stakeholder goals through a
systematic process [1]. For example, the goal Schedule a Meeting in a university set-
ting might be fulfilled by a system that supports a set of functions (gather constraints
automatically, find free slots, send out reminders, etc.) as well as actions carried out
by external actors (participants, a meeting initiator etc.). When the designer selects an
alternative for fulfilling top-level stakeholder goals and generates a design, the implicit
claim is that the design will fulfill every instance of the goal (e.g., successfully schedule
and hold every requested meeting).

Unfortunately, the world is not that simple. The design – which implements a generic
plan for fulfilling the goal – may actually fail for a number of reasons, including limited
resources, bad scheduling, unexpected obstacles, and more. For instance, participants
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may provide inaccurate constraints or maintain incomplete on-line calendars. Or, the
email with the meeting invitation may include the wrong time or room. Even sending
the email per se often does not guarantee its receipt, especially when mail servers or
anti-spam filters are not appropriately maintained. Hence, actions – carried out by the
system or actors in its environment – produce effects that vary in uncontrollable ways.
In other words, a design may fail to fulfill instances of a goal due to violation of implicit
domain assumptions and axioms [1], such as those pertaining to the expected effects of
system or user actions.

To address such uncertainties, stakeholders may want to posit probabilistic require-
ments, such as Meeting scheduling requests will be fulfilled 95% of the time [2]. Given
such requirements, it is the task of the designer to come up with a plan that will suc-
ceed within the probabilistic constraints of the requirement. At the same time, however,
stakeholders wish to maintain the multi-objective nature of alternatives analysis. Thus,
potentially conflicting goals such as Quick Scheduling vs. Maximize Attendance or Keep
Secretary Unburdened vs. Quality of Schedule may each be served better by different
designs. Stakeholders may be willing to exchange an increased probability of failure
with an increased value in one or more of those objectives in case of success. In these
circumstances, searching for a suitable design is a process of finding designs that of-
fer the best combination of quality, based on stakeholder preferences, and likelihood of
success, i.e. the best expected value.

In this paper, we introduce the concept of decision-theoretic goals, which combines
the merits of their probabilistic [2] and their preferential [3] cousins in order to capture
both probabilistic uncertainty and preferential utility in goal models. To achieve this, we
extend the preference and priority-enabled goal modeling language we proposed in [3]
to allow representation of probabilistic actions, that is, actions that do not have just one
unique effect but a probability distribution over possible effects/outcomes. Utility func-
tions, on the other hand, assign different desirability measures to different such action
outcomes. The extended goal model is then translated into DT-Golog, a formal spec-
ification language that combines ideas from dynamic domain specification languages
and Markov Decision Processes (MDPs) [4, 5]. A DT-Golog reasoning tool is then used
to evaluate alternative designs by which the specified goals are fulfilled with optimal
expected value. This way, both likelihood and value are considered when searching for
good solutions to the given requirements problem.

We organize the paper as follows. In Section 2 we present our goal modeling nota-
tion and in Section 3 we show how we extend it to allow for decision-theoretic analysis.
In Section 4 we show what kinds of automated reasoning the technique enables. Then,
in Section 5 we report on an application to a real-world meeting scheduling problem
as well as the London Ambulance Service (LAS) case and discuss tool performance.
Finally, we survey related work in Section 6 and conclude in Section 7.

2 Goal Models

Goal models ([1, 6]) have been found to be effective in concisely capturing large num-
bers of alternative sets of low-level tasks, operations, and configurations that can fulfill
high-level stakeholder goals. In Figure 1, a (simplified) goal model for scheduling meet-
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ings is depicted. The model shows how the high-level goal of a meeting organizer to
Have a Meeting Scheduled is analyzed into the particular subgoals and actions that are
needed for the goal to be attained. The model primarily consists of goals (also: hard-
goals) and tasks. Goals – the ovals in the diagram – are generally defined as states of
affairs or conditions that one or more actors of interest would like to achieve [6]. Tasks,
on the other hand, – the hexagonal shapes – describe particular activities that the actors
perform in order to fulfill their goals.

Fig. 1. A goal model

Goals and tasks are connected with each other via AND- and OR-decompositions.
By AND-decomposing a goal into other subgoals or tasks, we indicate that the sat-
isfaction of each of its children is necessary for the decomposed goal to be fulfilled.
However, children of AND-decompositions can be designated as optional through a
circular annotation added on their top, such as Send Attendance Reminder in the figure.
On the other hand, if the goal is OR-decomposed into other goals or tasks, then the
satisfaction of one of these goals or tasks suffices for the satisfaction of the parent goal.

The order in which goals and tasks are satisfied and performed respectively is rele-
vant. To express constraints over satisfaction ordering we use a precedence link (

pre−→).
A precedence link drawn from a goal/task to another goal/task, indicates that satisfac-
tion/performance of the target of the link cannot begin unless the origin is satisfied or
performed. Thus, the precedence link from Find Suitable Room to Meeting Announced
indicates that unless the former is performed, none of the tasks below the latter can be
performed. Furthermore, the negative precedence link (

npr−→) indicates that performance
of the link target cannot start if the element at the origin of the link has been satisfied.
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Moreover, soft-goals (the cloud-shaped elements) represent goals whose fulfillment
does not have a clear-cut satisfaction criterion. Since satisfaction of soft-goals cannot be
established in a crisp manner, the degree by which they are satisfied is assessed through
evidence of satisfaction of other goals. In the goal model, this is represented through
positive helps ( +−→) and negative hurts ( −−→) contribution links drawn from goals and
tasks to soft-goals.

The AND/OR decomposition implies a number of sequences of leaf-level tasks that
can satisfy the top level hard goal. We call such sequences plans. The variability of such
plans emerges both due to the existence of OR-decompositions and optional sub-goals
in the AND/OR tree, allowing for different subsets of tasks that can fulfill the root goal,
and due to the fact that a given subset (i.e., a solution to the AND/OR tree) can be
ordered in different ways subject to

pre−→ and
npr−→ constraints. Furthermore each plan

has a different impact to high-level soft-goals. Back in Figure 1, a plan that includes
calling everybody to acquire constraints has a negative impact to the soft-goal Reduce
Labour and should be avoided if that soft-goal is important. It would be a good plan,
however, if Quick Scheduling were a high priority goal.

3 Goals, Probabilities and Utilities

3.1 Decision-Theoretic Goals

In the standard notation we described above, performance of tasks is assumed to bring
about the desired result with certainty. In reality, however, tasks have multiple intended
or unintended outcomes, each with different likelihood. As such, task performance does
not guarantee goal achievement. To model and reason about this uncertainty, the tradi-
tional concept of a goal has been extended to include a probability of success to it [2,
7]. Hence, probabilistic goals describe a desired state of affairs as well as a minimum
probability value for this state to be successfully reached.

To this, however, we wish to add here another dimension: that of utility as measured
by the impact that solutions of the goal have to high-level qualities and stakeholder pri-
orities thereof. Thus, decision-theoretic goals require maximization of expected utility,
which combines probability of success and utility. Thus:

“Have Meeting Scheduled”, optimally
requires that a meeting is scheduled while maximizing expected utility. Nevertheless,
since expected utility combines probability and utility, it is possible that the plan with
the optimal expected utility score has a forbiddingly low success probability. Thus goal:

“Have Meeting Scheduled”, optimally, prob 0.7
demands that we wish to schedule the meeting optimally but also ensure that the prob-
ability of success of the optimal plan exceeds 0.7. Hence, decision-theoretic goals pre-
scribe both the quality that plans to achieve them must meet, in terms of satisfying
high-level preferences, and our risk tolerance with respect to those plans.

To allow reasoning about decision-theoretic goals we extend the standard goal mod-
eling formalism with the following elements: domain predicates, which model the state
features of the domain, effect tables, which model possible effects of tasks and their



Modeling and Reasoning with Decision-Theoretic Goals 5

Table 1. Effect, Utility, and Priority Tables.

probabilities, attainment functions and utility tables, which connect the state of the do-
main with the achievement of goals and soft-goals, respectively, and priority tables,
whereby we prioritize goals. We discuss each of these extensions below.

3.2 Representing State and Probabilistic Effects

The first step in our extension is to explicate what is true in the environment before,
while and after the tasks of the goal model are performed. To do so we use domain
predicates. Domain predicates represent fixed facts about the domain – e.g. avail-
able(secretary) or has(projector, meetingRoom) – or facts that may vary due to the per-
formance of tasks or exogenous reasons – e.g. invitationsSent or requested(meetingRoom).
Each combination of truth values of the domain predicates determines the state in which
the process for fulfilling the goals is; let S denote the set of all such combinations. Note
that we do not model states explicitly in our proposal; rather we only model state fea-
tures representing individual changeable properties domain.

Let us now focus on tasks. Ideally, performance of a task by an agent implies that
certain facts in the domain change in a deterministic way, leading the system to a new
state with certainty. In reality, as we claimed, this cannot always be assumed. Firstly, the
outcomes of some tasks rely on chance due to their nature. For example the task Find
Suitable Time Slot may or may not lead to a situation where slotFound holds, depending
on the scheduling constraints at hand. Secondly, there are tasks that have one expected
and/or desired outcome, but they always run a probability of failure. Thus, the task
Send Invitations will most probably lead to the fact invitationsReceived being true, but
there is always a probability of the same fact being false due to a number of factors,
such as infrastructure error (server down, anti-spam false positives) or human error
(accidental deletion or mishandling of email). Human actors in particular may have
their own unidentified and conflicting goals that prevent them from acting as prescribed.
Thus, we are interested in representing probabilistic effects of tasks – that is effects that,
for a variety of reasons, may lead to different outcomes with different likelihood.

To do this we first associate each task with a number of effects that can poten-
tially be brought about upon the task’s performance. Effects are represented using do-
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main predicates. Thus, performance of the task Receive Responses may or may not
have an effect that adequateResponsesReceived, meaning that important participants
responded but not many others, versus the competing (mutually-exclusive in our case)
effects tooFewResponsesReceived, meaning that too few or none of the important par-
ticipants responded and excellentResponsesReceived, meaning that a very satisfactory
amount of responses has arrived, including the important participants. Each of those
effects occurs with a certain probability given different conditions.

We can represent these probabilities using a decision table such as that of Table
1a; we call it the effect table for the task. The table actually represents the probability
distribution over possible effects of the task Receive Responses. It contains one or more
decision variables, which represent possible configurations of effects that the task can
bring about, as well as one or more condition variables, which are the variables which
the probabilities of various value configurations of the decision variables depend on.
Both decision and condition variables are drawn from the set of domain predicates. Each
combination of condition and effect configurations occurs with a certain probability.

In the example of Table 1a, there are three decision variables (domain predicates: ex-
cellentResponsesReceived, adequateResponsesReceived and tooFewResponsesReceived)
and the probability that a certain combination of truth values occurs depends on three
condition variables that have to do with how long the initiator waited after the original
invitation (domain predicates: waited1Day, waited3Days and waited1Week). Thus the
probability that adequate responses will arrive within the first three days is 0.5. Note
that, in the particular example, both decision and condition variables are mutually ex-
clusive. In the general case, arbitrary combinations of values can be considered.

3.3 Redefining Goal Satisfaction

Hard-goals and Probabilistic Effects. The probabilistic interpretation of task effects
necessitates certain refinements to the goal model of Figure 1. Firstly, satisfaction of
hard-goals does not exactly reflect the AND/OR structure of the underlying subtree
anymore, because it is now measured by the effect of the underlying tasks and not by
the mere fact that the tasks are performed. Hence, we define satisfaction of the goal
based on the desirable effects of the task.

In the case of multiple effects, as in Receive Responses of Table 1a, we construct the
attainment formula of each task and hard-goal exclusively based on domain predicates,
which signifies what effects must be brought about to consider a goal or task satisfied
or performed. In our example, the attainment formula of task Receive Responses could
be excellentResponsesReceived ∨ adequateResponsesReceived. Satisfaction of higher
level hard-goals is defined via conjunctions or disjunctions of attainment formulae of
tasks depending on the corresponding AND/OR structure. Thus, the attainment formula
of Book Meeting is slotFound ∧ roomBooked, each being, in turn, predicates describing
probabilistic effects of tasks Find Suitable Slot and Find Suitable Room, respectively.
Note that it is in the discretion of the modeller to redefine satisfaction conditions, by,
for example, setting the attainment formula of Receive Responses to be just excellen-
tResponsesReceived – hence stricter than the previous one.

Assessing Soft-goal Satisfaction. As with hard-goals, in light of probabilistic ef-
fects of tasks, a refined model of the satisfaction of soft-goals should also depend on
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the actual outcome of task performance, rather than the mere fact that a task was per-
formed. For example, the claim that the task Send Attendance Reminder contributes
negatively to the soft-goal Avoid Annoying the Participants can be supported only if
the reminder actually went through – if not, no annoyance can reasonably be assumed.
Thus, contribution links are refined into relationships between domain predicates and
soft-goals. More specifically, similarly to the attainment formula we saw above, each
soft-goal g of the goal graph is assigned an attainment function ug that maps the set S
of all possible truth assignments of domain predicates to an interval of real numbers:
ug : S 7→ [0, 1]. Thus, different configurations of truth values for the domain predicates
imply a potentially different value for the attainment function of the soft-goal at hand.
The higher the attainment value, the more the soft-goal is believed to be satisfied. In
the interval [0,1], 1.0 represents full satisfaction of the soft-goal and 0.0 its full denial.
Thus, in effect, we quantify the originally qualitative contributions of the goal model –
we suggest how below.

We found that representation of attainment functions is also possible using a tab-
ular format such as that of Table 1b – we call it the utility table. The variables used
in the table represent the domain predicates that influence the satisfaction of the soft-
goal. Each combination of truth values of those domain predicates is associated with
the actual attainment value (seen as a utility value) of the soft-goal at hand. Thus, at-
tainment values express utility (with respect to the soft-goal at hand) of the situation(s)
that is/are described by each truth value combination. In Table 1b, a possible attainment
function for the soft-goal Avoid Annoying the Participants is shown. Attainment of that
goal largely depends on whether the meeting organizer has called all participants on the
phone to gather constraints, expressed through domain predicate calledEverybody as
well as whether s/he has (successfully) sent them reminders to attend the meeting, mod-
eled through the domain predicate reminderArrived – other predicates are irrelevant. In
the utility table, different combinations of truth values of these domain predicates imply
a different attainment value for the soft-goal, shown in the last column. Thus, according
to the table, in any state s ∈ S in which predicate calledEverybody is true and predicate
reminderArrived is false, the attainment value for goal Avoid Annoying the Participants
(for short: AvoidAnP) is uAvoidAnP (s) = 0.3.

Aggregating utilities through priority profiles. Utility tables show how each state
of the domain implies a different attainment value for a particular soft-goal. To assign
to each state a universal “goodness” value which combines all soft-goals of interest we
use priority tables [3]. A priority table is a representation of the relative importance of
soft-goals, in form of a weighted numeric combination. They can include any subset of
soft-goals from the goal model. Table 1c shows a priority table with three soft-goals.
In the case of an hierarchical organization of soft-goals, we can elicit priority tables for
each decomposition of the hierarchy, combine them in a larger profile containing only
leaf-level soft-goals and continue our analysis with those (cf. [8]).

Given a priority profile and its weights we can construct a linear combination of
attainment formulae of individual soft-goals expressing a measure of global utility
U , which we call total utility. This measure is used for optimization as we describe
below. More formally, let w1, w2, . . . , wi be the priority values for soft-goals of in-
terest g1, g2, . . . , gi. Then, the total utility U for the goal model in state s ∈ S is
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U(s) =
∑

i wi × ugi(s). Thus, as per Table 1c, 0.1, 0.2 and 0.7 are the priority values
for soft-goals Avoid Annoying the Participants (for short: AvoidAnP), Quick Scheduling
and Reduce Labor respectively. In a state s where soft-goal Avoid Annoying the Partic-
ipants is satisfied by, e.g. 0.3 and Quick Scheduling and Reduce Labor are satisfied by
0.9 and 0.5 respectively, the total utility value U for that state will be:

0.1× uAvoidAnP (s) + 0.2× uQuickScheduling(s) + 0.7× uReduceLabor (s)
= 0.1× 0.3 + 0.2× 0.9 + 0.7× 0.5 = 0.56

Getting the numbers. The quantitative measures we discuss above occur both in
the form of probabilities and in the form of utility/priority values. Overall, while we
focus in this paper on the technical representation and reasoning aspects, we believe
that there are solid methods and experience in terms of eliciting probabilities and utility
measures [9]. As we demonstrate below, probability numbers can come from either
simple measurements in the domain or, in the absence of such, subjective judgement by
the modellers. Further, there is a variety of ways by which utility and priority numbers
can be found, including prominent requirements prioritization techniques such as AHP
[10, 8]; both Tables 1b and 1c can be results of AHP’s pairwise comparisons. Even
subjective ad-hoc assessment is a realistic possibility: it has been found that even if the
numbers are not exact, they may be good enough to make correct informed decisions
[11]. Otherwise, numerical attainment values are expressions of utility and as such can
be obtained through more systematic techniques such as reward elicitation [12].

4 Reasoning about Decision-Theoretic Goals

4.1 Integrating Decision-Theoretic Planning

The above extensions are useful for performing automated reasoning about goal satis-
faction under probabilistic effects, utilities and soft-goal priorities. To enable this, the
extended goal model is translated into DT-Golog [4, 5]. DT-Golog is a formal language
for modeling and reasoning about dynamic domains under uncertainty, through combin-
ing logical and procedural action theory specification and Markov Decision Processes
(MDPs). A DT-Golog specification consists of constructs that represent state features,
called fluents, as well as agent actions that bring the world from one situation, where
some fluents are true, to another, where the same fluents or different ones might be
true. In the action theory specification, DT-Golog programs “glue” actions together in a
procedural manner in order to describe ways to achieve goals. Moreover, precondition
and successor state axioms define what needs to be true in order for an action to be
performed and how exactly fluents are affected by each action, respectively. The effects
of actions are multiple and each with a different probability. Further, both actions and
fluents are used to define utility functions. This way, DT-Golog can search for policies
(i.e., nested branching statements prescribing what action to take depending on a condi-
tion) within constraints imposed by the program. A returned policy maximizes the total
accumulated expected utility defined as the (gradually discounted) sum of the products
of total utility values and the probability that each such value is obtained when follow-
ing a remaining portion of the policy. In addition to a policy, DT-Golog also returns a
probability of successful termination that sums probabilities of all branches in which a
given program runs to completion.
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The generation of a DT-Golog specification from the extended goal model in order
to allow such reasoning, is based on translating tasks into actions, and domain predi-
cates into fluents. Further, precedence links inform the formation of precondition ax-
ioms and effect tables translate into successor state axioms and probabilistic effects.
DT-Golog procedures mimic the hard-goal structure, while the soft-goal structure is
translated into a utility function. For the interest of space, the formal translation details
appear in our longer technical report.

4.2 Querying for Optimal Solutions

Let us return to the example of Figure 1 and discuss different kinds of decision-theoretic
goals we can reason about using DT-Golog with the generated specification.

Optimizing expected utility. Decision-theoretic goals of the form “Schedule Meet-
ing”, optimally are satisfied by a policy p of the translated goal model G, iff p brings
about the maximum accumulated expected utility in G. The necessary probability and
utility measures are drawn from the appropriately translated effect, utility and priority
tables we saw above. Thus, in Figure 1 and assuming we have introduced effect and
utility tables for each of the involved tasks and soft-goals accordingly (which we do
not present due to space constraints), by setting all soft-goals to be of equal priority we
find a policy with total accumulated expected utility 2.7. The policy includes success
plans (i.e. branches of the policy in which all tasks are successfully performed) such as
[si,w7,rr,fs,fr,se,sar,pam] (referring to abbreviations in the parentheses
inside the task symbols). DT-Golog informs us also that the total probability of success-
ful termination of the policy is 0.4.

The result is, of course, sensitive to probability and utility values. Thus, if we as-
sume that soft-goals follow the priority values of Table 1c, instead of having equal prior-
ity as we assumed above, the resulting policy, with accumulated expected utility 3.1 and
probability of success 0.34, includes success plans such as [au,fs,fr,se,sar,pam].
Clearly, the increased importance of soft-goal Reduce Labour in the priority table favours
the choice of automated constraint gathering au.

Testing Probability Thresholds. The other kind of decision-theoretic goals that we
saw has the form “Schedule Meeting”, optimally, prob c, where c is a probability value.
Such a decision-theoretic goal is satisfied by a policy p of the translated goal model
G iff p has the maximum accumulated expected utility in G and p has a probability of
success greater or equal to c. Thus, DT-Golog simply tests if the optimal policy has a
probability of success above c. For example, the second of the above optimal policy has
a success probability of 0.34, meaning that, if we also had a probability threshold c of,
say, 0.7, DT-Golog would report failure to find suitable policy. Note that optimality is
defined in a global sense and independent of the probability threshold.

5 In Practice

5.1 A Meeting Scheduling Study

As a preliminary test of the feasibility of our modeling technique, we applied it to a
meeting scheduling problem that occurs in our workplace. Our SE@York seminars are
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events that we organize at York University and feature regular talks by visiting or res-
ident software engineering scholars and PhD students. The first author is the meeting
initiator of the SE@York meetings and has access to relevant data sources. Potential
participants are professors and graduate students of the IT and CS departments. The
standard request-based constraint acquisition method is performed by the initiator as
seen in the model of Figure 1. In terms of quality goals, the real concern of the organiz-
ers is to have good attendance. To a lesser extend they would like to have the meeting
scheduled as quickly as possible, for varying reasons including that e.g. a visitor speaker
is leaving the country or running out of patience.

Getting the numbers. In our domain, probabilistic data comes from the initiator’s
email archives (constraint requests and responses) as well as the paper-based room
booking logs. The numbers presented in the effect table of task Receive Responses in
Table 1a are actual values coming out of our data. The email archive data also allow us
to calculate the probability that a slot will eventually be found (0.83, in our case). The
room booking logs, on the other hand, allow us to calculate the probabilities that the
meeting room will be available. For our study, we simply looked at the probability that
the room is available at any workday from 9am to 5pm in January. A successful plan for
having a meeting properly scheduled is defined to be one in which at least half of the
responses have arrived prior to deciding on a time slot (so this is our semantics of the
effect adequateResponses) and a time slot as well as a meeting room is found immedi-
ately. These success conditions are defined accordingly through attainment formulae.

To elicit utilities we make use of the Analytic Hierarchy Process (AHP) [8], fo-
cussing on soft-goals Maximize Attendance and Quick Scheduling. Thus we set U(s) =
0.75×uMaximizeAttendance(s)+0.25×uQuickScheduling(s). These two attainment for-
mulae are defined also through pair-wise comparisons on the three probabilistic effects
of the task Receive Responses as well as on the effects representing the three children
of the goal Wait for Responses to Arrive.

Reasoning. We focus on the problem of how long the organizer must wait before
deciding a slot. For the above utilities, which represent our actual preferences, the op-
timal solution is to wait for seven days. The probability of success in that case is 0.5.
Should Quick Scheduling be more important than Maximize Attendance – and in our
SE@York meetings there have been such cases – after swapping the priority weights,
the optimal solution is to try waiting for 1 day. This is due to the fact that waiting less
(e.g. waited1Day) has much higher utility now. But this solution has lower probability
of success, 0.17, since within 1 day adequate responses may have not been received,
leading to higher failure probability of the task Receive Responses. To see why these
probability numbers appear to be low compared to our intuition one must remember that
we define ourselves through attainment formulae what constitutes a successful plan.

5.2 Adding Detail

Our use of DT-Golog with the specification that is generated from the semi-formal goal
model, exploits only a subset of DT-Golog’s expressive power. To further study how
DT-Golog’s expressive capabilities are applicable to the requirements analysis problem,
an application to the well known London Ambulance Service (LAS) [13] case was also
performed. The application is described in detail elsewhere [14] – here we focus on key
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features. The particular case concerns the problem of managing a fleet of ambulances
to respond to emergency incidents in the city of London, UK. What makes the case
particularly interesting for our purposes is the explicit performance requirements that
can be imposed in the form of an exact probability distribution of allowable ambulance
response times. More specifically, concrete performance and reliability requirements
can be set for candidate dispatch strategies. Thus, we can demand that a request is
responded to within 14 minutes of the time a call is placed, that activation time (call
receipt and decision) should always be made in less than 3 minutes, or that travel time
to the incident should be 11 minutes 95% of the time and 8 minutes 50% of the time.

To search for designs that meet these performance objectives, extension of the ini-
tial DT-Golog specification needs to be performed by adding detail in a number of
ways. Firstly, domain information is added in the form of particular instances of ob-
jects, agents and contexts that are involved in the LAS operations. Thus, the geography
of three city regions is modeled using 10x10 grids. Each hospital, ambulance, incident
etc. is represented as a DT-Golog fact and occupies at a given point in time a particular
cell in the grid, representing its geographical position. Actions and fluents are relativised
to particular objects through parameters. Thus, a fluent of the type carLocation(c,l,t,s)
is used to represent that an ambulance c is at location l at time t in situation s – the
location is represented through a term loc(x, y), where x and y are co-ordinates in the
grid. Actions also have a temporal argument, with which their duration is encoded.

To allow analysis of different dispatch strategies, each expected to have different
performance characteristics, Golog procedures describing those strategies are written.
These are more complex than translations of AND/OR structures that the framework
we described above produces. Furthermore, the utility functions are an essential part of
each strategy, as they describe the chosen optimization approach. Thus, aspects such as
the familiarity of an ambulance driver in an area or the effect of personnel fatigue are
modeled through appropriately structured utility tables.

Moreover, simulation is necessary when there is a need to model random variables
representing exogenous events. In the LAS case, these are the occurrence of emergency
incidents. A Poisson distribution of incidents is assumed with various arrival frequency
scenarios. Different dispatch strategies are then repeatedly tried for a large number of
requests. The response times are counted/averaged and compared with the set require-
ments, allowing better understanding of the behaviour of different response strategies.

5.3 Tool Performance

DT-Golog has been found to perform reasonably well compared to plain MDP solving.
But how does it perform with our goal models? To explore this we tried it with different
sizes of goal models, which we constructed by randomly combining smaller models we
have developed for real domains (meeting scheduler, automatic teller machine, on-line
bookstore and nursing). This way, the resulting artificial models preserved some degree
of structural naturalness. Random numbers were entered for the probability values.

We had DT-Golog compute optimal policies for each root goal. The search horizon
was set to the maximum plan length the goal model can yield. We used an Intel(R)
Core(TM)2 CPU T5500 1.67 GHz with 4.00 GB RAM under Windows 7 to perform
the experiments. In Table 2, the time to get the result is given in seconds with respect
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Nodes Bound Time Nodes Bound Time Nodes Bound Time Nodes Bound Time
10 4 0.0 30 8 0.07 45 19 95.3 60 16 4395
20 8 0.08 40 12 3.7 50 14 75.6 65 21 (*)

Table 2. Time (in sec) to find optimal solution.

to the size of the goal model, (*) signifying non termination within an hour – the bound
also indicates the maximum plan length the model can yield. For design time analysis,
the tool seems to perform adequately well for sizes up to about fifty nodes. Note also
the dependency of the performance on the maximum plan length. We are optimistic
that these times will improve as more research is taking place on the matter of reasoning
performance (e.g. [15]). It is important to point that the presence of a DT-Golog program
restricts the state space to a subset that is meaningful for the domain at hand. This
allows DT-Golog to reason much more efficiently than e.g. a plain MDP-based approach
would. In the LAS case we described, for instance, the overwhelming space of 30300 ·
2300 possible states did not prevent DT-Golog from doing useful analysis.

6 Related Work

Probabilistic analysis of requirements has been a subject for some investigation the
past few years. Notable is the work by Letier and van Lamsweerde [2], in which goal
structures offer the basis for structuring probability density functions that constitute
a measure of achievement of non-functional objectives. Genetic-algorithm based rea-
soning was further proposed to allow for selecting static solutions that optimize such
measures [16]. Recently, these ideas were applied for supporting obstacle analysis [7].
Our framework is different in a number of ways including that it focuses on agent action
and dynamic aspects of the solutions (policies/plans) in addition to choices in the goal
hierarchy and that it systematically integrates separate measures of priority, utility and
probability in a semi-formal manner.

Probabilistic model checking with MDPs has been proposed in PRISM [17] and
successfully used in a variety of applications – albeit not yet in the context of goal
modeling. One fundamental difference between the model checker and DT-Golog that
makes the later more suitable for our particular purpose is the fact that DT-Golog readily
allows us to specify complex actions as programs and evaluate alterative designs, which
is crucial for requirements analysis. Thus, DT-Golog goes beyond the classic MDP ap-
proach, where only primitive stochastic actions are allowed and not programs composed
from such actions. Other approaches for dealing with uncertainty in requirements engi-
neering have focussed on self-adaptive systems and follow a fuzzy logic based approach
[18, 19]. In comparison, we model probability and utility as separate measures, and fo-
cus on automated reasoning about optimal behaviours, in terms of both those measures.
In addition, a wealth of proposals exist for reasoning about goal models [20]. In that line
of work, however, whenever dynamic aspects of the domain are considered, analysis is
deterministic and does not take uncertainty of action into account.

7 Concluding Remarks

We presented a decision-theoretic framework for modeling and reasoning about stake-
holder goals and priorities in the presence of uncertainty. The framework is based on
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the recognition that optimal solutions for fulfilling stakeholder goals will not necessar-
ily be executed as planned, but may fail due to human or system error or other unknown
factors. Therefore, to allow for pragmatic design-time analysis, we must take uncer-
tainty into account. This calls for rethinking the semantics of standard goal models that
is used for reasoning about alternatives. The main contributions of this paper towards
those directions are an approach to probabilistically extend goal models to allow for
modeling agent actions with uncertain effects together with stakeholder utilities and
priorities, as well as a way to translate them into a formal specification language that
allows for evaluating alternative designs based on utility optimization. We also show
how detailed analysis can be performed using this toolset. Differences of our proposal
from the work already done in the area include a strong focus on dynamic/behavioural
aspects of solutions (i.e. sequences of tasks) and allowing exploration of the interplay
between priority, utility and probability.

For the future, we wish to work on the core of the DT-Golog reasoner to also allow
searching for local optima with respect to probability thresholds, effectively allowing
trade-offs between probability and expected utility. Further, empirical assessment of
the reliability and accuracy of precise DT-Golog analysis (and the effort investment it
takes) is a priority. Scalability is an issue to be investigated in such a context. In terms
of scalability of the modeling process, our current sense is that, due to the modularity
of the probability and utility specification process (each task and soft-goal has its own
table), larger goal models should easily accommodate definition of effects and utilities.
In terms of scalability of the automated reasoning, our early results are encouraging for
small-to-medium practical models. Nevertheless, we still need to explore solutions with
larger models, such as breaking the problem into sub-problems [21].
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