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Abstract—Defect prediction models presented in the literature
lack generalization unless the original study can be replicated
using new datasets and in different organizational settings.
Practitioners can also benefit from replicating studies in their own
environment by gaining insights and comparing their findings
with those reported. In this work, we replicated an earlier
study in order to investigate the merits of organizational metrics
in building defect prediction models for large-scale enterprise
software. We mined the organizational, code complexity, code
churn and pre-release bug metrics of that large scale software
and built defect prediction models for each metric set. In the
original study, organizational metrics were found to achieve the
highest performance. In our case, models based on organizational
metrics performed better than models based on churn metrics
but were outperformed by pre-release metric models. Further,
we verified four individual organisational metrics as indicators
for defects. We conclude that the performance of different metric
sets in building defect prediction models depends on the project’s
characteristics and the targeted prediction level. Our replication
of earlier research enabled assessing the validity and limitations
of organisational metrics in a different context.

I. INTRODUCTION

Most of the research findings in the defect prediction
literature are isolated in the papers published by a particular
research group or laboratory. Open dataset repositories such
as Promise make it easy to store and share datasets used in
defect prediction [18]. In theory, if there is enough detail about
the original study, the results can be validated independently
by other researchers [8], [15]. However, dataset sharing may
not be possible for some companies due to confidentiality
concerns. Another problem is the ambiguous definitions in
the research papers. For example, in most defect prediction
papers, some information about the empirical setup and the
data extraction process is missing [11].

Replication studies in software engineering (SE) are impor-
tant to build a consistent body of knowledge. Overemphasis
on novelty in software engineering research may slow down
the progress [22]. Replication studies enable researchers and

practitioners to disseminate novel approaches and methods into
different contexts.

Replication of previous research is also valuable for the
industry. The domain, scope and process related variables may
be different for each project and organization. No solution
provides a “silver bullet” that is applicable under all circum-
stances. Identifying the conditions under which a particular
result is valid might help organizations to identify the research
findings that are relevant to them.

In recent years, researchers have been investigating the
merits of new metrics (i.e., product, people, process) in defect
prediction. In this paper, we focused on the organizational met-
rics to explore: the relationship between organizational com-
plexity and software quality, measures of the organizational
structure, and their capability of predicting software quality
in terms of defects. Organizational metrics are extracted from
the organization structure of a software development unit. For
each code module, based on the organizational hierarchy of
the developers, these metrics capture the code ownership.

Our industry partner wanted to investigate the value of
organization metrics in building defect prediction models. Es-
timation of the organizational metrics requires a well defined
organigram for an organization with hierarchical teams. Our
industry partner have a tree structure in terms of hierarchy,
and in our study we used a set of architectural functionality in
a large scale commercial software as our dataset. We used a
highly cited paper as our baseline by Nagappan et al. from
Microsoft Research [19]. In the original study the authors
compared organizational metrics with other well known metric
sets in building a defect prediction model. We used the same
research approach, metrics and empirical design to the best
possible extent. Then, we compared our findings with the
original study to check the external validity of their findings.

The structure of this paper is based on the replication study
framework suggested by Carver [8]. In the related work sec-
tion, we give an overview the replication studies in empirical
software engineering as well as an overview of organizational



metrics in defect prediction. In the description of the original
study section, we overview the shared research question of
this study (with the original study), context description, data
collection, study design and the summary of the results of
the original paper. In the information about the replication
section, we describe our motivation, level of interaction with
the original study researchers and the study changes. In the
comparison of the results section, we compare our findings
with the findings of the original study. In the threats to validity
section, we overview the potential threats to the validity of the
replication and conclude the paper with a brief summary of
the findings and future directions.

II. RELATED WORK
A. On the Value of Replication Studies in SE

In software engineering, replication studies are important to
better understand different aspects of software development, to
generalize from findings under different contexts, and to build
best practice solutions and standards for the practice. Various
research groups have emphasized the value of replication in the
software engineering domain [13], [15], [16], [20], [25]. While
Kitchenham et al. identifies replications as one of the key
enablers to achieve an evidence based software engineering
practice [16], Juristo et al. points to field replications using
real data as a maturity parameter for replication studies [15].

Several studies have attempted to define and classify repli-
cation. Shull defined a replication to be a study that is run
based on the design and results of a previous study [23]. He
mentioned that the goal of replication is to either verify or
broaden the applicability of the results of the initial study.
Brooks et al. further categorized replications as either internal
or external replications [6]. Internal replications are undertaken
by the original researchers and they may be published as
one paper or as a series, whereas, external replications are
undertaken by independent researchers who seek to check and
improve on the findings of other researchers. Sjoberg et al.
investigated the amount of replicated studies and found that
only one out of seven studies was replicated by an external
party [24]. Further, Basili et al. have defined 6 types of
replications [2]: 1) Strict replications, 2) Replications that
vary variables intrinsic to the object of study, 3) Replications
that vary variables intrinsic to the focus of the evaluation, 4)
Replications that vary context variables in the environment in
which the solution is evaluated, 5) Replications that vary the
manner in which the study is run, 6) Replications that extend
the theory.

In this respect, our study should be considered as a non-
strict external replication in a different context (type #6). Em-
pirical studies in software engineering are highly dependent on
the environment, the organization of the development teams,
the development process and the methodology. Therefore,
external replications that take place in a different environment,
if the same results are obtained, would lead towards better
generalization of results.

In reporting our work, we used the replication reporting
guidelines proposed by Carver [8]. Carver mainly suggests

reporting the details of the original study, replication and the
comparison of the findings in a replication paper. We chose
to follow these guidelines since it allows researchers to report
the similarities and differences between the original study and
the replication. The reason for parallel and conflicting findings
can also be observed using such a template.

B. Organizational Metrics in Defect Prediction

Organizational complexity can be defined within the con-
text of interaction mechanisms among the components of an
organization [10]. Organizational complexity and its effects
on software quality has been previously addressed by several
research groups. Conway identified the relationship between
systems design and communication structures of the organiza-
tions, a.k.a. Conway’s rule [10].

Programmer collaboration networks and the effect of pro-
grammer collaborations on software quality has also been
investigated extensively. Herbsleb and Mockus investigated the
relations between distributed software teams, increased soft-
ware development costs and reduced productivity [12]. They
also examined if works in different sites are interdependent
and how such interdependence may diminish over time. They
found that teams located at different sites have reduced overall
efficiency by examining the software changes [12].

Similarly, Jimenez et al. [14], Cataldo and Nambiar [9],
and Bird et al. [4] have all studied the effect of distributed
software development efforts on software quality. Jimenez et
al. surveyed the literature related to distributed systems de-
velopment and summarized the challenges and improvements
for distributed software development. Cataldo and Nambiar
concluded that as software development work becomes more
distributed the benefits of process improvement diminish.
Another study by Bird et al. analyzed the post release failures
for two systems, one developed in a distributed environment
whilst the other was developed in a collocated environment,
and they found negligible differences.

Caglayan et al. [7] studied the natural team formation
in software projects by investigating the evolution of the
collaboration network over time during a release of a large-
scale project. They found that collaboration teams among
the developers may be formed over time, independent of the
formal team structure of the organization.

Another notable paper in this area is a recent paper by
Bettenburg and Hassan [3] . They analyzed the issue level
collaboration information in the Eclipse project. They checked
the relation of the defect proneness of code with the collabora-
tion and extracted several metrics to build a logistic regression
model to predict the defect prone modules. They found that
when a part of the software module is discussed in the issue
management system by developers, the likelihood of a post
release defect increases.

Programmer collaboration has been used previously to build
metric sets for the defect prediction problem. Meneely et
al. [17] and Alhassan et al. [1] tested the merits of the
local collaboration metrics in the defect prediction problem.
They found that the local collaboration metrics form a strong



alternative to the other well-established metric sets. Bird et
al. [5] further investigated the ownership dimension in more
detail, they extracted ownership metrics and evaluated the
relationship of these metrics with pre-release and post release
defects, and they concluded that there is a direct relationship
between ownership metrics and post release defects. Organi-
zation structures have further been evaluated by Shihab et al.
[21], focusing on software branching. They concluded that
misalignment between the branching structure within software
and the organizational structure is associated with higher post-
release failure rates.

The most relevant work to ours — as a replication study —
is the baseline, or the original study by Nagappan et al. which
is explained in the next section in detail [19].

III. DESCRIPTION OF THE ORIGINAL
STUDY

In this section, we briefly provide information about the
original study that we use as the basis of this replication.
We follow Carver’s ‘replication guidelines’ in reporting the
recommended amount of details about the original study [8].

The motivation behind the original study, conducted by
Nagappan et al., was to provide answers to the following
questions [19]:

« How does organizational complexity influence quality?

« Can we identify measures of the organizational structure?

« How well do they do at predicting quality, e.g., do they

do a better job of identifying problem components than
previously used metrics?

To address these questions, Nagappan et al. investigated the
“...relationship between organizational structure and software
quality” [19] via a case study and analysis of data from Win-
dows Vista. Their dataset included metric data (explained later
on in this section) from 3404 binary files (corresponding to
50M+ lines of code) and their post-release failure information.

Nagappan et al. proposed a metric suite of eight measures
to quantify organizational issues “...such as organizational
distance of the developers; the number of developers working
on a component; the amount of multi-tasking developers are
doing across organizations; and the amount of change to a
component within the context of that organization” [19]. The
proposed metric suite! includes:

« Number of Engineers (NOE): Number of unique people
who edited the code base and who were working for the
organization at the product release date.

o Number of Ex-Engineers (NOEE): Number of unique
people who edited the code base and who were not
working for the organization anymore at the product
release date.

« Edit Frequency (EF): Total number of times the source
code for the unit of analysis (i.e., binary files) is edited -
measured by the number of commits in the source code
revision system.

IPlease refer to the original study for more detailed descriptions of the
motivation and the theory behind these measures.

o Depth of Master Ownership (DMO): The level of
the person (e.g. Master Owner) in the organization tree,
whose subtree (i.e., reporting engineers/ subordinates)
contributes more than 75% of the changes.

« Percentage of Organization contributing to develop-
ment (PO): The ratio of the size of (e.g. number of people
in) the subtree rooted at Master Owner to the total size
of the (sub-) organization.

« Level of Organizational Code Ownership (OCO):
Percentage of changes made from the organization that
contains the Master Owner.

« Overall Organizational Ownership (OOW): The ratio
of the size of (e.g. number of people in) the subtree rooted
at Master Owner to the total number of people who made
changes.

« Organizational Intersection Factor (OIF): Number of
different organizations who contribute changes that ac-
count more than 10% of all changes.

The original study validated the organizational metric suite
by two different approaches. First, the authors constructed
a step-wise regression model with backward selection. They
observed that all eight metrics were retained in the final model.
Second, they applied Principal Component Analysis (PCA).
They observed that the number of principal components to
explain the majority of the sample variance was eight, meaning
that PCA cannot find less number of factors. Hence, they con-
cluded “...that all the eight organizational measures contribute
towards explaining the variance in the post-release failures. ..”
and decided to use all eight measures in building models to
predict failure-proneness [19].

The original study then built logistic regression models
from organizational metric suite using random splits (2/3 for
training and 1/3 for testing) of Windows Vista data. The
decision threshold for the logistic regression was set to 0.5
for classifying an instance as defect-prone or not. The stability
of the models across 50 random runs were reported in terms
of precision, recall and the Spearman correlation between the
predicted probability of fault-proneness and the dependent
variable (i.e., post release defects in a binary file).

Besides the organizational metrics, the original study also
included other, more traditional, metrics to be used as inde-
pendent variables in constructing different conceptual models
to predict failure-proneness of binary files in Windows Vista
(i.e., whether a binary file has post-release defects). This
resulted in a total of six comparable logistic regression models
representing each metric dimension, i.e., organizational, code
churn, code complexity, dependencies, code coverage and pre-
release defects.

Table I provides (as per recommendations in [8]) a summary
of the six comparable models as reported in the original study.
The performance is assessed in terms of precision and recall,
and the average of 50 random splits are reported in Table I.
Nagappan et al. state that the performance achieved through
the organizational structure model is significantly better than
other models, with a 7.6% difference with the precision of
the closest model corresponding to hundreds of binaries in



TABLE I: SUMMARY OF ORIGINAL STUDY RESULTS (FROM
[19D).

Model Precision | Recall
Organizational Structure 86.2% 84.0%
Code Churn 78.6% 79.9%
Code Complexity 79.3% 66.0%
Dependencies 74.4% 69.9%
Code Covergae 83.8% 54.4%
Pre-Release Bugs 73.8% 62.9%
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their context. They conclude “...that organizational metrics
are better predictors of failure-proneness than the traditional
metrics used so far” [19].

IV. INFORMATION ABOUT THE REPLICATION

In this section, we provide information about our motivation
for conducting the replication, the level of interaction with the
original authors and the changes to the original study.

A. Motivation for Conducting the Replication

Churn and complexity metrics are well-known metric sets
in the defect prediction literature [11]. On the other hand,
organizational metrics is a new metric set proposed by the
authors of the original study. These metrics model the relation
between the organizational structure and the source code. In
the original study by Nagappan et al. they built a prediction
model that used organizational metrics. This model outper-
formed previous models using several well known product
related metric sets as well as churn metrics [19] in Windows
Vista. Based on these findings and considering their ease of
extraction, they concluded that organizational metrics seems to
be a promising new metric set. Although this paper has been
widely cited, we have not found any other study that used
these metrics on a different setting and dataset. The purpose
of our study is to test the merits of organizational metrics
on another large scale commercial software. We performed a
close replication of the original study on a dataset from our
industrial partner.

B. Level of Interaction with the Original Researchers

In a typical software engineering research paper, it is not
possible to explain every detail of the study. Therefore, the
level of interaction with the original researchers is important
to clarify these details. In this study we had personal com-
munications with the authors of the original paper to clarify
methodological issues. Nevertheless, operating in a different
industrial context and based on our industry partner’s interests,
our study included some changes in the study context, which
are explained next.

C. Changes to the Original Study

It is important to note that our methodology follows the
methodology in the original paper as much as possible. In
this section, we report the deviations from the original study
due to changes in the operational context and our industry
partner’s interests.

Naturally, the most important change in our empirical setup
is related to dataset. The main difference of our study is the
targeted level of defect prediction. We used C/C++ source code
functions in our case instead of binaries as input for the defect
prediction model. All of the metric calculations were done
on source code function level. In our study, we had to do a
few changes on data extraction due to the differences in the
project that we analyzed. The rest of this section explains these
differences in a more detailed manner.

1) Different Dataset: We used a large-scale enterprise soft-
ware product to conduct our empirical work. The enterprise
software product of the company has a 20 years old code base.
We used a 1467 kKLOC part of the product as the dataset. The
software is a set of architectural functionality and a core part
of a large relational database management software with 30
MLOC. Contextual details of the dataset are included as part
of Table II in comparison with the original study.

In the original study, authors predicted defects in binary
file level. Binaries are a compiled set of source code files
in Microsoft Vista. In our study, although we had the option
to follow the original study, due to company goals of defect
management, our industry partner wanted us to operate at a
much lower level. In our case, quality (defect) info is directly
available at file level and it provides more focused ability to
take action. Mean LOC per file was more than 3 kLOC and a
typical file in our dataset contained more than 500 functions.
Due to large file size, nearly every file had at least one defect
during the observed period. The total size of the dataset used
was 1.5m LOC and 4855 functions. Compared to the size of
Windows Vista (3404 binaries, S0m LOC) our project was
considerably smaller in terms of LOC.

The other difference is about the purpose and the users of
projects. Microsoft Windows is a popular operating system
with hundreds of millions of users. On the other hand, the
project we used in this study is a set of functionality used
by other components of the relational database management
system and are accessed only indirectly by the end-users.

In the original study, the details of the developer hierarchy
in the Windows Vista team are not provided. The authors
advised using organizational metrics for projects with more
than thirty developers. In our case, hierarchy for most teams is
four level deep and the number of developers? is well over 30.
A part of the developer reporting hierarchy in the organization
is provided as a figure in the appendix.

2) Missing Metric Sets: We were able to extract metrics at
four dimensions as defined in the original study, namely: static
code, churn, pre-release defect and organizational metrics. We
could not extract dependency and code coverage data since
these metrics were not stored by the organization.

We used all of the original organizational metrics in the
project except number of ex-engineers since no developer left
the project during the observed period. The most important

’Due to confidentiality issues we are not able to report the total number
of developers, but it is sufficient to say that it is 30+ in a 4+ level depth
hierarchy, which is more than the recommended minimum by the original
study.



TABLE II: DATA SET OF ORIGINAL STUDY AND DATASET OF REPLICATION STUDY

Original Replication
Project Windows Vista A Set of Architectural Functionality in an Enterprise
Software
Programming | C and C++ C and C++
Language
Versioning NA IBM Rational ClearCase
System
Software Binary Function (in C/C++ sense)
Module
Definition
Number of | 3404 4855
Modules
Size (LOC) 50 Million 1.5 Million
Snapshot NA 10 months before release
Date

part of organizational metric extraction process is building
an accurate representation of the organization’s organigram.
We initially extracted this organigram with a bottom up
approach. For each issue in the project, manager and developer
information was stored. We formed a tree by merging all
these relations. Initially the merging procedure produced a
lot of disconnected trees. We held several meetings with our
contacts in the organization to merge these trees and produce
an accurate organigram for the project.

We could not compare our metric extraction methodology
with the one employed in the original paper. We believe,
these details had to be omitted by the authors because of the
privacy concerns in the company. The authors may have had
access to the actual organigram in Microsoft considering their
affiliations with the company.

3) Differences in Defect Prediction Target Entities: As
explained in the dataset section, the most important difference
in our empirical setup is the definition of the targeted software
modules for the sake of defect prediction. Source code function
(in C, C++ sense) level is much finer grained compared to
binary level since a binary may consist of several source
code files. In contrast, a C source code file may have tens
or hundreds of functions. We used the same performance
measures for estimating the defect prediction performance.
Similarly, we used the same study design as the original study.
The dataset were divided into 1/3 and 2/3 random splits and
the analyses were repeated 50 times. Distribution and the
means of Spearman correlation, precision and recall values
were reported. The study design in the original paper can be
seen in Section III.

V. COMPARISON OF THE RESULTS

In this section, we report our findings, and the differences
with the original study are denoted in italic face.

A. Exploratory Analyses

In the first phase, we checked the distributions of the
organizational metrics. In Figure 1, the pairwise distributions
of the organizational metrics can be observed. Similarly, Table
IIT shows the correlations among the organizational metrics.
The correlation data or the pairwise distributions were not

provided in the original study. In our case, the correlation
among the organizational metrics are high. In the figure and the
table, we see very high positive correlation between number of
engineers (NOE) and edit frequency (EF). This finding can be
intuitively expected since the number of edits would increase
with the increasing number of unique developers who change a
piece of code. One might also argue that, EF and NOE metrics
are related to churn rather than organization. The other five
organizational metrics had relatively lower correlation among
themselves, except for OOW with NOE, OCO and OIF. Since
OOW is defined in terms of the ratio of the Master Owner
(root of subtree that contributes 75% of changes), its strong
correlations with NOE and OCO do not come as a surprise.

TABLE III: CORRELATION AMONG THE ORGANIZATIONAL
METRICS. ((SIGNIFICANCE: * : P < 0.05, %% : P < 0.01, %% :
P <0.001)

noe ef 0Co oif po 00w
noe
ef  0.84%%*
oco  -0.57%%k  0.27%**
oif  0.54%**F  (0.26%**  -0.73%**
po  -0.05%**  -0.03* 0.06%**  -0.07%***
oow  -0.60%F%k  0.33¥¥*  (.62%*¥*  -0.70%**  (0.08%**
dmo  0.00 0.02 0.06%**  -0.02 0.00 0.03*

We then performed Principal Component Analysis (PCA)
on the organizational metrics to check principal components
(PC’s). The authors summarized their PCA results as follows:
“Running a PCA on the eight organizational measures resulted
in the generation of eight principal components indicating that
PCA does not reduce the computation overhead in anyway
by transforming the organization measures into fewer factors
which can be used as predictors” [19]. However, PCA always
generates as many PC’s as the number of features, and in
the original study raw numbers for the proportion of variance
explained have not been provided.

In our case, when we performed PCA on the normalized
metrics the results were different. The first five components
explained more than 95 percent of the variance (see Table
IV). Although in general terms we agree with the authors’
remark about the computational overhead, considering the total



TABLE IV: PROPORTION OF VARIANCE EXPLAINED BY THE PCA COMPONENTS

Comp.l Comp.2 Comp.3 Comp4 Comp.5 Comp.6 Comp.7
Standard deviation 1.79 1.05 1 0.98 0.62 0.49 0.29
Proportion of Variance 0.46 0.16 0.14 0.15 0.05 0.03 0.01
Cumulative Proportion 0.46 0.62 0.76 0.90 0.95 0.99 1

TABLE V: VALUES OF THE COEFFICIENTS FOR THE AT-
TRIBUTES. F — Stat CRITERION WAS USED TO REMOVE AT-
TRIBUTES. (SIGNIFICANCE: .: P < 0.1,*: P <0.05).

Df Deviance F value Pr(>F) Sign.

<none> 6254.21

noe 1 6300.21 35.65  0.0000 *
ef 1 6258.55 3.37  0.0666

oco 1 6255.33 0.87  0.3500

oif 1 6255.23 0.79  0.3738

po 1 6366.59 87.08  0.0000 *
00w 1 6261.90 596  0.0147 *
dmo 1 6254.34 0.10  0.7472

number of features, the computational overhead caused by
increased number of features is negligible.

In summary, we have observed some differences in validat-
ing the individual organizational metrics, though we followed
the analyses procedure of the original study. This is a sign
that the effectiveness or descriptive power of the proposed
metrics may depend on the context of the project/ organization
in which they are applied.

B. Comparison of Prediction Model Outputs

In this step, we compared the defect prediction performance
of the organizational metrics in our dataset with the results of
the original study.

The authors of the original study found all of the organi-
zational metrics to be significant in the multivariate model,
e.g. all of them were retained in the logistic regression
model with backward selection. [19]. The coefficients for these
metrics were not provided in their paper. In Table V the
coefficients and the significance values for the organizational
metrics for the model based on our dataset are provided. The
non-significant attributes were dropped in the final stepwise-
regression model that generated the results discussed in this
section.

In our case, only four out of eight metrics, namely the
number of editors (NOE), edit frequency (EF), percentage of
organization contributing to development (PO) and overall
organizational ownership (OOW) were found to be significant.

For convenience, we show the stability indicators for the
results of the original study and the replication side by
side for easy comparison, in Figures 2, 3 and 4 (used in
the original study and reproduced with our dataset). These
figures show the fluctuations in recall, precision and Spearman
correlation (among the predictions and actual defect info for
target modules) performance metrics for 50 randomized runs.
The fluctuations in the performance for the randomized runs
seem to be similar in both cases, indeed mostly stable, based
on visual inspection.

However, our performance indicators seem to be consis-
tently lower than the original results, especially for Spearman
correlations. This difference in the predictive power of organi-
sational metrics can again be explained by the different context
of our dataset.

Finally, the authors also reported the mean of precision
and recall values in the original paper. The comparison of
the means for the two datasets can be seen in Table VI. We
checked the significance of the differences in the performance
four conceptual models based on different metric sets (i.e.,
organisational structure, code churn, code complexity, pre-
release bugs) using Mann-Whitney U test (P < 0.005).

In our case, organizational metrics outperformed code
churn metrics for both performance measures. Therefore, our
findings confirm the potential benefit of organizational metrics
for defect prediction. However, pre-release metrics (with 71%
recall and 99% precision) outperformed all of the other metric
sets including the organizational metrics. In this regard, the
performance ranking of the metric sets is not consistent with
the empirical findings of the original paper.

VI1. THREATS TO VALIDITY

In this section we discuss the threats to the validity of our
replication that are specific to the replication study as well as
the ones inherited from the original study.

Internal validity: Similar to the original study this repli-
cation is prone to issues related with the causal inferences.
In terms of data quality, our data collection is a post-mortem
activity, and, therefore it could not have been modified by the
developers to affect the results. As for the operationalization of
the constructs, we have strictly followed the original study and
accordingly did not introduce any researcher bias that could
have caused expected results. Though one of the authors of
this paper was formerly affiliated with the case company, we
have taken further precautions to mitigate the risk of researcher
bias and we delegated the process of data collection and data
analysis to the other authors of this paper.

Construct validity: In measuring the theoretical constructs
defined in the original study, we followed a similar process
defined therein by automating the data collection process
through source code analyses, code revision systems and issue
repositories. Since the organizational structure was not readily
available to us, we had to regenerate it in a bottom-up fashion
as explained in Section IV. In order to mitigate the risks,
we have discussed and finalized the resulting structure with
people from the case company who were able to cross check
the outcome with the company yellow pages.

External validity: Similar to the original study, our results
are based on the data collected from one software product of
a specific company and may not reflect generalization to all
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Fig. 1: Pairwise Scatter Plot of The Organizational Metrics.

software organizations. However, our replication itself is an
effort towards enhancing the external validity of the original
study. The different results of this replication are likely to be
based on either the differences in the replication settings or
the differences between the organizational contexts. In either
case, more controlled replications are needed to be able to
generalize the results or to scope them in specific settings.

VII. CONCLUSIONS

In this paper, we replicated the work by Nagappan et al.
on the effects of organizational metrics in software quality,
pursuing the answers for the identification of organisational
structure measures and their influence on and power to predict
product quality [19]. Our replication was carried out in a
different industrial environment with slight changes in the
context.

Nagappan et al. proposed a new metric set reflecting or-
ganisational structure and found it to be superior over code-
churn, complexity and pre-release metrics in predicting quality.

In our replication, organizational metrics were not the top
performing metric set; it was outperformed by a pre-release
bug metric based prediction model. However, we verified
that organisational metrics were better than code-churn metric
set in predicting defects. In terms of the individual metrics
in the proposed organisational metrics set, we verified the
applicability for the four of them (NOE, EF, PO, OOW) and
showed that the rest does not apply to our dataset.

The changes in our empirical design, such as the difference
in the prediction targets may have caused the differences in the
results. Specifically, our functional method level predictions -
as opposed to the binary file level predictions of the original
study - is most likely the reason for observing pre-release bug
metrics as the best indicators, as they represent a finer grained
prediction level for the dependent variable, i.e., defects. Nev-
ertheless, these changes in our study design allowed us to
provide evidence for the validity and limitation of the original
results in a different context.
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TABLE VI: COMPARISON OF PREDICTION PERFORMANCE FOR DIFFERENT METRIC SETS

Replication Original Study

Model Precision  Recall | Model Precision  Recall
Organizational Structure 66.2%  73.1% | Organizational Structure 86.2% 84.0
Code Churn 629% 61.6% | Code Churn 78.6%  79.9%
Code Complexity 61% 80.9% | Code Complexity 79.3%  66.0%
Pre-release bugs 70.8%  99.0% | Pre-release bugs 73.8%  62.9%

Dependencies 744%  69.9%

Code Coverage 83.8%  54.4%

Based on our findings we conclude that organizational
metrics are worth further investigation, but we can not claim
that they are the best indicators of defect proneness of a
software product in all contexts, as we have demonstrated
a counter-case. We encourage other researchers to replicate
either the original or our work in other datasets, especially
in large-scale industrial projects, for external validation and
generalization of the results.
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Fig. 5: A partial organizational hierarchy derived from the reporting structure among the contributors of the project investigated
in this study. Each node corresponds to a person. The nodes at the periphery are the developers/ engineers and the inner nodes
indicate more managerial responsibilities. We cannot report the actual organigram due to confidentiality issues. However, the
number of people in the structure are 30+ and they are organised in 4+ levels, satisfying the minimum criteria set by the
original study.



