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Abstract
This paper presents a physics-based approach to

surface reconstruction using an elastically deformable
“sheet” model. The model is based on a thin-plate un-
der tension spline which deforms to fit visual data ac-
cording to internal forces stemming from the elastic
properties of the surface and external forces which are
produced from the data. We employ the finite element
method to represent the model as a continuous sur-
face. We implement two versions of the sheet using
two different finite elements. The first is a triangular,
quintic finite element whose nodal variables comprise
the position of the surface plus its first and second
partial derivatives. This element is “natural” in the
sense that the nodal variables reflect each of the par-
tial derivatives that occur in the spline’s strain energy
functional. The partial derivatives are useful in mea-
suring the differential geometric properties of the fitted
surface. The second element is a rectangular, bicubic
finite element whose nodal variables also include some
of the partial derivatives of the surface. We apply the
sheet model to the reconstruction of various 3D data
sets generated by several different sensing technologies
related to CAGD and terrain mapping.

1 Introduction
General purpose shape reconstruction in low-level

visual processing requires models with the ability to as-
sume a wide range of shapes. The models must extract
meaningful information from noisy sensor data while
making the weakest possible assumptions about ob-
served shapes. Deformable models can stretch, bend,
and twist to assume complex freeform shapes; hence,
they seem ideally suited to this task. These models in-
tegrate, regularize, and approximate the data to pro-
duce a globally consistent interpretation.

Surface reconstruction techniques based on splines
have attracted significant interest for many years be-
cause of their versatility. However, the dynamic form
of this type of surface reconstruction was introduced
fairly recently by Terzopoulos et al. [13]. They
proposed a dynamic deformable cylinder model con-
structed from generalized splines and developed force
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field techniques to fit the model to image data. The
dynamic model fitting approach is being pursued by
several researchers [6, 9, 2, 3, 14, 5, 15], as it is in this
paper.

This paper presents a physics-based approach to
surface reconstruction using an elastically deformable
“sheet” model. The model is based on physically mo-
tivated multi-dimensional generalizations of classical
splines. The model is dynamic, and its deformation is
governed by the laws of nonrigid motion. The formula-
tion of the motion equations includes strain energies,
simulated forces, and other physical quantities. The
strain energy stems from a thin-plate under tension
spline, and deformation results from the action of in-
ternal forces which describe continuity constraints and
external forces which describe data compatibility con-
straints.

We employ the finite element method to discretize
our deformable sheet into a set of connected element
domains. The finite element method provides an an-
alytic surface representation and it generally requires
fewer discretization points than finite difference tech-
niques for the same degree of accuracy. We implement
two versions of the sheet model using two different fi-
nite elements. The first is a triangular, quintic finite
element whose nodal variables reflect the derivative
terms found in the thin-plate under tension energy ex-
pression. That is, the nodal degrees of freedom include
not only the nodal positions, but all of the first and
second order partial derivatives of the surface as well.
These quantities are useful in the analysis of the fitted
model surface. The second element is a rectangular,
bicubic finite element whose nodal variables also in-
clude some of the partial derivatives of the surface.

Finite element representations for variational prob-
lems in vision were first explored in [11]. Our formula-
tion applies the finite element method to the thin-plate
under tension spline proposed in [12] in order to de-
rive discrete nonrigid dynamics equations. Our work
is related to that of [1] who also develop a deformable
surface model which is based on the thin-plate under
tension spline.



2 Dynamic Deformable Surface Model
The deformable sheet is a rectangular open surface

represented as a single-valued scalar function z(x, y)
defined on a bounded domain in the (x, y) image
plane, where z represents the lateral displacement of
the sheet. We construct the sheet using a simulated
thin-plate material under tension. The deformation
energy of this material serves as a smoothness con-
straint which compels the sheet to vary smoothly al-
most everywhere. The data constraints apply forces
which pull the sheet laterally from its nominally pla-
nar state to the data points.

The deformation energy is given by the functional

Ep(z) =
∫ ∫

α10 |zx|2 + α01 |zy|2 +

β20 |zxx|2 + β11 |zxy|2 + β02 |zyy|2 dx dy,
(1)

where the x and y subscripts denote derivatives in the
x and y directions respectively. Ep is a controlled-
continuity spline defined in [12]. The nonnegative
weighting functions αij(x, y) and βij(x, y) control the
elasticity of the material. The α10 and α01 functions
control the tensions in the x and y directions, respec-
tively. The β02 and β20 functions control the bending
rigidities in the x and y directions, respectively. The
β11 function controls the twisting rigidity. Increasing
the αij has a tendency to decrease the surface area of
the material, while increasing the βij tends to make
it more rigid. In general, the weighting function may
be used to introduce depth and orientation discontinu-
ities in the material. In this paper, however, we do not
pursue this topic and we set the functions to constant
values αij(x, y) = αij and βij(x, y) = βij .

The expression for the total energy of the de-
formable sheet is

Esheet(z) = Ep(z) + Eext(z), (2)

where
Eext = −

∫ ∫
zf(x, y) dx dy (3)

is a data energy derived from the data forces f(x, y).
We fit the model to the data by minimizing this energy.

Figure 1 illustrates the surface reconstruction prob-
lem using the sheet model. The figure shows the sheet
fitted to several data points using different values for
αij(x, y) and βij(x, y).

In keeping with the physical nature of our recon-
struction technique, we fit the deformable sheet model
to data by making it dynamic. A dynamic formula-
tion naturally supports model visualization during the
data fitting process, and, if needed, allows a user to
introduce constraint forces to pull the model out of
local minima towards a good solution.

In a dynamic formulation, the positions of material
points becomes a time-dependent function z(x, y, t)

(a) (b) (c)

Figure 1: Sheet fitted to nine data points.
(a) Sheet with αij = 0.8, βij = 0.0. (b) αij = βij =
0.4. (c) αij = 0.0, βij = 0.8.

and the simulated material is imbued with mass and
damping densities. Using Lagrangian dynamics the
energies yield forces and Esheet(z) is minimized when
the forces equilibrate and the model becomes station-
ary ∂z/∂t = ∂2z/∂t2 = 0.

The dynamic behavior of the model during the fit-
ting process is governed by

µ
∂2z

∂t2
+ γ

∂z

∂t
+ δzEp = f(x, y, t). (4)

where the first term represents the inertial forces due
to the mass density µ(x, y), the second term represents
the damping forces due to the damping density γ(x, y),
the third term represents the elastic force which resist
deformation, and finally f(x, y, t) represents the data
forces.

3 Finite Element Representation
To apply the finite element method, we tessellate

the continuous image domain (x, y) into a mesh of el-
ement subdomains Ej . We approximate the continu-
ous z as a weighted sum of piecewise polynomial basis
functions Ni:

ẑ(x, y, t) =
N∑

i=1

Ni(x, y)qi(t) ≈ z(x, y, t), (5)

where qi is a vector of nodal variables associated with
mesh node i. We define q = [q>1 , . . . ,q>i , . . . ,q>N ]>.

Substituting (5) into (4) yields the discrete equa-
tions of motion

Mq̈ + Cq̇ + Kq = fq, (6)

where the mass matrix M, damping matrix C, and
stiffness matrix K are sparse, symmetric matrices and
fq are nodal data forces. These global matrices and
nodal data forces may be assembled from their asso-
ciated local element matrices, Mj , Cj , Kj , and nodal
forces f j

q , by expanding each element matrix appro-
priately into a q × q matrix and then summing. For
example:

K =
M∑

j=1

Kj
q×q, (7)



where Kj is the element stiffness matrix associated
with element Ej , j = 1, . . . , M .

We now derive expressions for Mj , Cj , Kj , and
f j
q from element kinetic and potential energy function-

als. Let zj(x, y, t) be the position of material point
x, y within Ej , and let qj denote the concatenation
of nodal variables for all the nodes of Ej . Following
equation (5), we write the element trial function

ẑj(x, y, t) = Nj(x, y)qj(t) ≈ zj(x, y, t), (8)

where Nj are known as element shape functions. Note
that the basis functions Ni are obtained by superpos-
ing the shape functions associated with node i. The
element velocity is ∂ẑj/∂t = Njq̇j , where q̇j(t) is the
rate of change of the nodal variables.

The kinetic energy associated with element Ej be
expressed as

1
2

∫ ∫

Ej

µ
∂ẑj

∂t

∂ẑj

∂t
dx dy =

1
2
q̇j>Mjq̇j , (9)

where the element mass matrix is given by

Mj =
∫ ∫

Ej

µNj>Nj dx dy. (10)

We introduce simple velocity-proportional kinetic
energy dissipation according to the dissipation func-
tional

1
2

∫ ∫

Ej

γ
∂ẑj

∂t

∂ẑj

∂t
dx dy =

1
2
q̇j>Cjq̇j , (11)

where the element damping matrix is given by

Cj =
∫ ∫

Ej

γNj>Nj dx dy. (12)

According to (1) the element deformation matrix
may be expressed as

Ej
p(z) =

∫ ∫

Ej

σσσj>εεεj dx dy (13)

where the strain vector is

εεεj =
[
∂zj

∂x
,
∂zj

∂y
,
∂2zj

∂x2
,

∂2zj

∂x∂y
,
∂2zj

∂y2

]>
(14)

and the stress vector is

σσσj =




αj
10 0 0 0 0
0 αj

01 0 0 0
0 0 βj

20 0 0
0 0 0 βj

11 0
0 0 0 0 βj

02




εεεj = Djεεεj , (15)
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Figure 2: C1 continuous triangular element. The three
nodes are numbered.

Using (8), we can write

εεεj = Bjqj , (16)

where Bj is the element strain matrix. Inserting the
expressions for εεεj and σσσj into (13) yields

Ej
p(z) = qj>Kjqj (17)

where the element stiffness matrix is given by

Kj =
∫ ∫

Ej

Bj>DjBj dx dy. (18)

Finally, according to (3), the potential energy in
element Ej due to data forces f j(x, y, t) is

−
∫ ∫

Ej

zjf j(x, y) dx dy = −qj>f j
q , (19)

where the nodal data forces are given by

f j
q =

∫ ∫

Ej

Njf j dx dy. (20)

3.1 Triangular C1 Finite Element
The first version of the sheet model uses a fifth-

order triangular finite element[4]. The nodal variables
of this element are z, along with its first and second
partial derivatives evaluated at each node i. The nodal
variable vector for the sheet is therefore

qi(t) =
[
zi, ( zx)i , ( zy)i , ( zxx)i , ( zxy)i , ( zyy)i

]>
.

(21)
These nodal variables reflect each of the partial deriva-
tives that occur in the thin-plate under tension energy
(1) functional.

Figure 2 shows the C1 continuous element defined
locally in the dimensionless oblique coordinates (ξ, η).
In this local coordinate system, the global coordinates
(x, y) can be expressed as

x = (1− ξ − η)x3 + ξx1 + ηx2 (22)
y = (1− ξ − η)y3 + ξy1 + ηy2



where (xi, yi) are the global coordinates at the nodes
of the triangular element (as numbered in the figure),
and the local nodal variable vector becomes

qiξ
(t) =

[
zi, (zξ)i , (zη)i , (zξξ)i , (zξη)i , (zηη)i

]>
.
(23)

The transformation from global to local coordinates is

qi = Tiqiξ
(24)

where the transformation matrix Ti is specified in [4]
(pp. 100–101).

Concatenating the qiξ
at each of the three nodes

of element j, we obtain the 18-dimensional element
nodal vector qj

ξ = [q>1ξ
,q>2ξ

,q>3ξ
]>. According to (8),

we can write the local trial function as ẑj(ξ, η, t) =
Nj(ξ, η)qj

ξ(t). The nodal shape functions Ni(ξ, η)
which are contained in the 18×18 matrix Nj are spec-
ified in [4] (pp. 100–101). Note that the polynomial
basis of the element is complete up to fourth-order
terms and contains three fifth-order terms. The trial
functions are C∞ within elements and they ensure C1

continuity between elements. Since (1) contains up to
second order derivatives, the element is conforming.

The shape functions are expressed in terms of the
local coordinates (ξ, η) and it is convenient to work
with these coordinates. Thus, the required derivatives
of the shape functions in the strain matrix B are com-
puted using repeated applications of the chain rule and
equation (23). Also, a function f(x, y) may be inte-
grated over Ej by transforming to the local coordinate
system:
∫ ∫

Ej

f(x, y) dx dy =
∫ ∫

Ej

f(x(ξ, η), y(ξ, η)) detJ dξ dη.

(25)
where

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
(26)

is the Jacobian matrix. These integrals are approxi-
mated using Gauss-Legendre quadrature rules.
3.2 Rectangular C1 Finite Element

Since the image domain is rectangular, it is natu-
ral to use rectangular finite elements. Consequently,
we also implemented the sheet model using a four-
noded rectangular bicubic Hermitian element with
nodal variables z, along with its first derivatives and
second cross-derivative evaluated at each node i. The
nodal variable vector for this version of the sheet is

qi(t) =
[
zi,

(
∂z

∂x

)

i

,

(
∂z

∂y

)

i

,

(
∂2z

∂x∂y

)

i

]>
. (27)

Thus there are sixteen degrees of freedom per element.
Although the nodal variables of this element do not

,
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Figure 3: Hermitian rectangular element. The four
nodes are numbered.

contain the full set of nodal derivatives, the uniform
tessellation of the image domain along with the ele-
ment nodal first derivatives can be used to compute
the remaining second derivatives.

For the rectangular Hermitian bicubic element, the
local coordinates

ξ =
2
a
(x− xc), η =

2
b
(y − yc), (28)

are used ((xc, yc) are the coordinates of the element
center). Using this element, the trial function ẑ can
be written as

ẑ(x, y) =
4∑

i=1

N1izi +N2i
∂zi

∂x
+N3i

∂zi

∂y
+N4i

∂2zi

∂x∂y
,

(29)
where

N1i = N0i(ξ)N0i(η), N2i = N0i(ξ)N1i(η)
N3i = N1i(ξ)N0i(η), N4i = N1i(ξ)N1i(η)(30)

The nodal shape functions Nij are specified in [8]
(pp. 206). Note that the trial function (29) is an in-
complete sixth-order polynomial in terms of ξ and η
and possesses continuity in both the function and its
first derivatives. As the energy functional Ep contains
2nd order partial derivatives, the Hermitian bicubic el-
ement ensures continuity of the trial function and its
first derivatives at element interfaces, hence this ele-
ment is also conforming.
3.3 Numerical Integration

In computer vision and geometric design applica-
tions involving the fitting of models to data, we can
simplify the equations of motion (6) while preserving
useful dynamics by setting the mass density µ(x, y)
to zero to obtain Cq̇ + Kq = fq. This first-order dy-
namic system governs a model which has no inertia
and comes to rest as soon as all the applied forces
vanish or equilibrate.

We integrate equation (3.3) forward through time
using an explicit first-order Euler method. This
method approximates the temporal derivatives with



forward finite differences. It updates the degrees of
freedom q of the model from time t to time t + ∆t
according to the formula

q(t+∆t) = q(t) + ∆t(C(t))−1
(
f (t)
q −Kq(t)

)
. (31)

The time step ∆t must be selected carefully, since
small time steps slow down the computation while ex-
cessively large time steps result in numerical instabil-
ity.

In our implementation, we do not explicitly assem-
ble and factorize a global stiffness matrix K as is com-
mon practice in applied finite element analysis. In-
stead, we update the nodal vectors q(t+∆t)

i iteratively
by computing the product Kjqj on an element-by-
element basis using the element stiffness matrices Kj .
This approach makes the model fitting process easily
parallelizable.

4 Applied Forces
Our dynamic surface reconstruction paradigm ap-

plies data constraints to the model as external force
distributions f(x, y, t).

For laser range data or digital terrain maps, we use
forces based on distances between data points and a
model’s surface, and the continuous force distribution
becomes a discrete, vector of forces. That is, we define
long-range spring-like “point” forces

f(x, y) = κ ‖p− z(xp, yp)‖ (32)

proportional to the separation between a data point
p in space and the point of influence z(xp, yp) of the
force on the model’s surface.

For the sheet model, the data point p(x, y) is pro-
jected onto the surface parallel to the z axis. Equation
(20) can then be applied to transform this force into
an equivalent set of nodal forces f j

q .

5 3D Generalization
The deformable sheet model is represented as

a single-valued scalar function z(x, y) defined on a
bounded domain in the (x, y) plane as described above.
We have also implemented a deformable “balloon”
model, using a more general, multi–valued parametric
representation

x(u, v) = [x(u, v), y(u, v), z(u, v)]> (33)

where vector x represents the positions of material
points (u, v) relative to a reference frame Φ in Eu-
clidean 3-space. Note that the single–valued sheet
model representation can be considered as a special
case of the multi–valued representation: x(u, v) =
[u, v, z(u, v)]>.

The deformation energy of the thin plate material
under tension for the multi–valued case is an extension

of (1)

Ep(x) =
∫ ∫

α10 |xu|2 + α01 |xv|2 +

β20 |xuu|2 + β11 |xuv|2 + β02 |xvv|2 du dv,
(34)

where the u and v subscripts denote parametric deriva-
tives.

6 Surface Analysis
Once a surface has been extracted and recon-

structed from the data, a logical next step is to char-
acterize the surface structure for use in analysis, visu-
alization, and recognition tasks. For example, surface
curvature extrema often correspond to significant in-
trinsic features of an object [7]. Consequently, it is
desirable for a surface model to not only extract accu-
rate and meaningful information from the data, but to
provide the extracted information in a convenient and
useful form.

From differential geometry, 3D smooth surfaces are
uniquely characterized by their first and second fun-
damental forms. The parametric surface form of the
sheet model (i.e. x(u, v) = [u, v, z(u, v)]>), along
with the finite element approximation, provides us
with an analytical description of the reconstructed sur-
face that is directly amenable to a differential analy-
sis. Furthermore, since the nodal variables of our fi-
nite elements contain not only the nodal position but
the nodal derivatives (i.e. xu,xv,xuu,xuv,xuv where
xu = (1, 0, ∂z

∂x ) and xv = (0, 1, ∂z
∂y ) etc.) as well, all the

information needed to compute the first and second
fundamental forms of the surface is generated auto-
matically. The intrinsic differential characteristics of
the surface, such as the unit normal and the principal
curvatures, can be conveniently computed from this
information.

7 Applications
We have applied our surface fitting technique using

the deformable sheet model on sampled laser range
data and a 3D digital terrain map. Our experiments
run at interactive rates on a Silicon Graphics Indigo
workstation.
7.1 Fitting Surfaces to 3D Range Data

This section demonstrates the reconstruction of sur-
faces from regularly sampled laser range data. Range
data based surface reconstruction has practical appli-
cations in the areas of visualization and CAD based
manufacturing. The range data used in the experi-
ments are from the NRCC 3D image database [10].

In the first set of experiments we fit a 50×50 element
deformable sheet to the following range images

• 5000 range data points randomly sampled from a
128 × 128 pixel range image of a statuette (Fig.
4(a)) (NRCC image database CAT ]155).



• 2599 range data points randomly sampled from a
range image of the upper “hemisphere” of an egg
(Fig. 4(d)) (NRCC image database CAT ]233).

• 7696 range data points randomly sampled from a
range image of the upper part of a mug with a
pitted surface (Fig. 4(g)) (NRCC image database
CAT ]251).

For this set of experiments, the weights αij and βij

were set to 0.8 and 0.01 respectively, the force gain pa-
rameter κ was set to 30.0 and the time step ∆t was set
to 0.002. The fitting process required approximately
80 seconds, 40 seconds, and 80 seconds to complete
for each of the three data sets respectively on a Silicon
Graphics Indigo workstation. Both implementations
of the sheet model were fitted to the range images
listed above, with similar results. Figure 4(c) shows
the result of the rectangular finite element version of
the sheet, while figures 4(f) and 4(i) show the result of
the triangular element version.

7.2 Digital Terrain Mapping
We used the deformable sheet to reconstruct 3D

terrain models from cartographic data. For this ex-
periment we extracted isoelevation contours from a
256 × 256 digital terrain map. Figure 5(a) shows a
rendering of the digital terrain map. We subsampled
the terrain map using 8 contour lines at 200m inter-
vals(Fig. 5(b)) and then fit the sheet to the resulting
sparse contour data. Figure 5(c) shows the final fitted
surface using 30×30 square elements. The fitting pro-
cess takes on the the order of 20 minutes to complete,
primarily due to the sparseness of the data; in areas
where there is little or no data the model takes more
time to “fill in”.

8 Conclusions

We have developed two finite element implemen-
tations of a dynamic deformable sheet model based
on a thin-plate under tension spline. The behavior of
the dynamic model is governed by equations of mo-
tion, which make the model responsive to forces de-
rived from the 3D data and cause the model to con-
form to the data. The dynamic formulation naturally
supports model visualization during the data fitting
process. We use the most “natural” finite elements
to represent the model as a continuous surface. The
triangular element is a conforming C1 element whose
nodal degrees of freedom reflect the derivative terms
found in the energy expression the thin-plate under
tension spline and they can be used in the analysis
of the surface properties of the fitted surface. The
rectangular element is also a conforming C1 element
whose nodal degrees of freedom include useful deriva-
tive terms. We have demonstrated the usefulness of
our sheet model for reconstruction of surfaces with ir-
regular shape features by applying them to laser range

data and digital terrain data. We are currently exper-
imenting with local subdivision techniques and adap-
tive meshes to increase the efficiency, accuracy, and
flexibility of our model.

References
[1] I. Cohen, L.D. Cohen, and N. Ayache. Introducing New

Deformable Surfaces to Segment 3D Images. In Proc. IEEE
Conf. Comp. Vis. Pat. Rec., pages 738–739, June 1991.

[2] L.D. Cohen. On Active Contour Models and Balloons. In
CVGIP: Image Understanding, volume 53(2), pages 211–
218, March 1991.

[3] H. Delingette, M. Hebert, and K. Ikeuchi. Shape Represen-
tation and Image Segmentation Using Deformable Surfaces.
In Proc. IEEE Conf. Comp. Vis. Pat. Rec., pages 467–472,
June 1991.

[4] G. Dhatt and G. Touzot. The Finite Element Method Dis-
played. Wiley, New York, 1984.

[5] W.C. Huang and D.B. Goldgof. Adaptive-Size Physically-
Based Models for Nonrigid Motion Analysis. In Proc. IEEE
Conf. Comp. Vis. Pat. Rec., pages 833–835, 1992.

[6] D. Metaxas and D. Terzopoulos. Recursive Estimation of
Shape and Nonrigid Motion. In IEEE Workshop on Visual
Motion, pages 306–311, Oct. 1991.

[7] O. Monga, N. Ayache, and P. Sander. From Voxel to Cur-
vature. In Proc. IEEE Conf. Comp. Vis. Pat. Rec., pages
644–649, June 1991.

[8] D.H. Norrie and G. deVries. An Introduction to Finite
Element Analysis. Academic Press, New York, 1978.

[9] A. Pentland and B. Horowitz. Recovery of Nonrigid Mo-
tion and Structure. IEEE Trans. Pat. Anal. Mach. Intel.,
13(7):730–742, July 1991.

[10] M. Rioux and L. Cournoyer. The NRCC Three-
Dimensional Image Data Files. Technical Report CNRC
No 29077, National Research Council of Canada, 1988.

[11] D. Terzopoulos. Multilevel computational processes for vi-
sual surface reconstruction. Computer Vision, Graphics,
and Image Processing, 24:52–96, 1983.

[12] D. Terzopoulos. Regularization of Inverse Visual Problems
Involving Discontinuities. IEEE Trans. Pat. Anal. Mach.
Intel., 8(4):413–424, 1986.

[13] D. Terzopoulos, A. Witkin, and M. Kass. Constraints on
Deformable Models: Recovering 3D Shape and Nonrigid
motion. Artificial Intelligence, 36(1):91–123, 1988.

[14] Y.F. Wang and J.F. Wang. Surface Reconstruction us-
ing Deformable Models with Interior and Boundary Con-
straints. IEEE Trans. Pat. Anal. Mach. Intel., 14(5):572–
579, May 1992.

[15] A. Young and L. Axel. Non-Rigid Heart Wall Motion using
MR Tagging. In Proc. IEEE Conf. Comp. Vis. Pat. Rec.,
pages 399–404, 1992.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: (a)(d)(g) Range data images. (b)(e)(h) Sheet deforming to data. (c)(f)(i) Final reconstructions.

(a) (b) (c)

Figure 5: (a) Original digital terrain map. (b) Rendered contour data. (c) Reconstructed terrain.


