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Abstract

This paper presents a topologically adaptable snakes
model for image segmentation and object representation.
The model is embedded in the framework of domain subdi-
vision using simplicial decomposition. This framework ex-
tends the geometric and topol ogical adaptability of snakes
whileretainingall of thefeatures of traditional snakes, such
asuser interaction, and overcoming many of thelimitations
of traditional snakes. By superposingasimplicial grid over
the image domain and using this grid to iteratively repa-
rameterize the deforming snakes model, the model is able
to flow into complex shapes, even shapes with significant
protrusionsor branches, and to dynamically change topol-
ogy as necessitated by the data. Snakes can be created
and can split into multiple parts or seamlessly merge into
other snakes. The modd can also be easily converted to
and from the traditional parametric snakes model repre-
sentation. We apply a 2D model to various synthetic and
real imagesin order to segment objects with complicated
shapes and topol ogies.

1 Introduction

I mage segmentation remainsafundamental goal incom-
puter vision research. In recent years, segmentation tech-
niques which combine a local edge extraction operation
with the use of active contour models, or snakes[5], to per-
form aglobal region extraction have achieved considerable
successfor certain applications[3, 1,4, 6, 9]. Thesemodels
simulate elastic material which can dynamically conform
to object shapesin response to interna forces, external im-
age forces, and user specified constraints. The result is
an elegant method of linking sparse or noisy loca edge
information into a coherent object description.

Traditional snakes models are not without limitations.
Most agorithms based on active contour models can only
handle geometrically and topologically simple objects.
They areinadequatefor objectswith deep cavitiesor multi-
part objects. Snakes are sensitiveto their initia conditions
and therefore were designed as interactive models, allow-
ing the user to initialize them near objects of interest. The
internal energy constraintsof snakes models can limit their
geometric flexibility and prevent them from representing
long tube-like shapes or shapes with significant protrusions
or bifurcations. Furthermore, the topology of the struc-
ture of interest must be known in advance since traditional
snakes modelsare parametric and are incapabl e of topol og-
ical transformations without additional machinery.

Severa researchers have attempted to address some of
these limitations. Cohen [3] used an interna “inflation”
force to expand the snake past spurious edges towards the

real edges of the structure (as was done for deformable
surfaces in [11]), making the model less sensitive to ini-
tial conditions. Samadani [9] used a heuristic technique
based on deformation energies to split and merge active
contours. More recently, Malladi et al. [8] and Caselles
et al. [2] independently devel oped a topol ogy independent
active contour scheme based on the modeling of propa-
gating fronts with curvature dependent speeds, where the
propagating front isviewed as an evolving level set of some
implicitly defined function.

Most active contour models are parametric models
whose parameterization is defined initially and does not
change automatically throughout the deformation process.
If the topology of an object is fixed and known a priori,
such models are the most appropriate since they will pro-
vide greater constraint. Implicit models on the other hand,
such astheformulationused in [8], providetopol ogical and
geometric flexibility through their level sets. They are best
suited to the recovery of objects with complex shapes and
unknown topologies. Unfortunately, implicit models are
not as convenient as parametric models in terms of math-
ematical formulation, for shape analysis and visualization,
and for user interaction.

Inthis paper, we devel op a parametric snakes model that
has the power of an implicit formulation by using a super-
posed simplicia grid to quickly and efficiently reparameter-
ize the model during the deformation process. That is, we
embed thetraditional snakesmodel withintheframework of
simplicia domain decomposition — a theoretically sound
decomposition method based on classical results from al-
gebraic topology. This framework enables our model to
maintain the traditional properties associated with snakes,
such as user interaction, while overcoming many of the
limitations described above. Using the simplicid grid to
iteratively reparameterize the model alows it to flow into
complex shapes and change its topology when necessary.
Multipleinstances of themodel can be dynamically created
or destroyed, or can seamlesdly split or merge. Conversion
toand fromthetraditional snakesmodel formulationissim-
ply amatter of discarding or imposing thegrid at any time.
Thus, the grid provides a simple and effective means to ex-
tend the geometric and topol ogical adaptability of snakes.

We apply our topologically adaptable snakes model to
segment objects with complex shapes and topol ogies that
cannot easily be segmented with traditional snakes. In
this paper, we consider the 2D case only, although the
model isreadily extensibleto deformable surfacesin higher
dimensions.
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2 Mode Implementation

We define our snakes model as a closed elastic 2D con-
tour consisting of a set of nodes interconnected by ad-
justablesprings[1]. The dastic contour model isadiscrete
approximation to the traditiona snakes model and retains
all of the snake properties. That is, an “inflation” force
pushes the model towards image edges until it is opposed
by externa image forces, the internal spring forces act as
a smoothness constraint, users can interact with the model
using spring forces and other constraints, and the defor-
mation of the model is governed by discrete Lagrangian
equations of motion.

Unlike traditional snakes, the set of nodes and inter-
connecting springs of our model does not remain constant
duringitsmotion. That is, wedecomposetheimagedomain
into agrid of discrete cells. Asthe model moves under the
influence of external and internal forces, we reparameterize
themodel with anew set of nodes and springsby efficiently
computing the intersection points of the mode with the
superposed grid. By reparameterizing the model at each
iteration of the evolutionary process, we create a smple,
elegant and automatic model subdivision technique aswell
as an unambiguous framework for topological transforma-
tions. Thisallowsthemodel to berelatively independent of
itsinitial placement and “flow” into complex shapes with
complex topologiesin a stable manner. Furthermore, con-
version to and from atraditiona parametric snakes model
representationissimply amatter of discarding or superpos-
ing the grid at any time during the evol utionary process.

2.1 Discrete snake model

A 2D deformable contour or snake can be thought of
as an energy minimizing spline in the z-y image plane.
We define a discrete snake as a set of NV nodes indexed by
i=1,..., N. Weassociate with these nodes time varying
positionsx; (t) = [2;(t), y;(t)] and amass m; along with
compression forces which make the snake act like a series
of unilateral springs that resist deformation from a rest
length, rigidity forces which make the snake act likeathin
wire that resists bending, and external forcesthat act in the
imageplane. Weconnect thenodesin seriesusing nonlinear
springsto form a discrete dynamic system whose behavior
is governed by the set of ordinary differential equations of
motion

miX; + vix; + a; + B; = 1. 1)

where x; isthe acceleration of nodei, x; isitsvelocity, m;
isthemass, +; isadamping coefficient that controlstherate
of dissipation of the kinetic energy of thenodesand f; isan
externd force that attracts the model toward salient image
edges [5]. Theforce

@; = a;ef; — a;_1ei_1%_1 )

makes the snake resist expansion or compression, where
r; = X;4+1 — %; and the caret denotes a unit vector, a; is
the spring stiffness and e; = ||r;|| — L;, where L; isthe
spring “rest” length. Since a new set of model nodes and
springsis computed during every iteration, we update these
rest lengthsby setting them equal to the new spring lengths.

N
)

Figure 1: Simplicia approximation of a contour model
using a Freudenthal triangulation. The model nodes (inter-
section points) are marked.

The “rigidity” forces
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make the snake resist bending. When computing thisforce,
we“normalize” the springlengthsto account for theuneven
node spacing. Finaly, an “inflation” force, h; = kn;, is
used to push the model towards image edges until it is op-
posed by external image forces, where k istheforce scale
factor and n; is the unit normal to the contour at node :.
Theuse of an inflation force essentially eliminatesthe need
for an inertia force term. For this reason, we have smpli-
fied the equations of motion, while still preserving useful
dynamics, by setting the mass density m; in equation (1)
to zero to obtain a modd which has no inertia and which
comes to rest as soon as the applied forces balance the in-
ternal forces. We integrate this first-order dynamic system
forward through time using an explicit Euler method.

2.2 Simplicial decomposition

Thegrid of discrete cellsused to approximate the snakes
model isan example of space partitioningby simplicial de-
composition. There are two main types of domain decom-
position methods: non-simplicial and simplicial. Most
nonsmplicial methods employ a regular tessdllation of
space. The marching cubes algorithm [7] is an example
of thistype. These methods are fast and easy to implement
but they cannot be used to represent surfacesor contoursun-
ambiguously without the use of a disambiguation scheme.

Simplicia methods, on the other hand, are theoretically
sound because they rely on classical resultsfrom algebraic
topology. In a simplicia decomposition, space is parti-
tioned into cells defined by open simplices, where an n-
simplex isthe simplest geometrical object of dimension n.
A simplicia cell decomposition is also caled a triangula
tion. The simplest triangulation of Euclidean space R” is
the Coxeter-Freudentha triangulation (Fig. 1). It iscon-
structed by subdividing space using a uniform cubic grid
and the triangulationis obtained by subdividing each cube
into n! simplices.

Simpliciadl decompositions provide an unambiguous
framework for the creation of loca polygona approxima
tions of a contour or surface model. In an n-simplex, the
negative vertices can always be separated from the positive
vertices by asingle plane; thus an unambiguous polygonal -
ization of the simplex always exists and as long as neigh-
boring cubes are decomposed so that they share common
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Figure2: Cdll classification.

edges (or facesin 3D) at their boundaries, aconsistent poly-
gonization will result. The set of simplices (or trianglesin
2D) of the grid that intersect the surface or contour (the
boundary triangles) form a two dimensional combinatorial
manifold that has as its dua a one dimensional manifold
that approximates the contour. The one dimensional mani-
fold is constructed from the intersection of the true contour
with the edges of each boundary triangle, resulting in one
line segment that approximates the contour inside this tri-
angle (Fig. 1). The contour intersects each triangle in
two distinct points, each located on a different edge. The
set of al these line segments congtitute the combinatorial
manifold that approximates the true contour.

Thecdlsof thetriangulationcan be classified inrelation
to the partitioning of space by a closed contour model by
testing the“sign” of the cell vertices during each time step.
If the signs are the same for all vertices, the cell must
be totaly inside or outside the contour. If the signs are
different, the cell must intersect the contour (Fig. 2).

The simplicia decomposition of theimage domain aso
provides a framework for efficient boundary traversa or
contour tracing. Thisproperty isuseful when modelsinter-
sect and topologica changes must take place. Each node
stores the edge and cell number it intersects and in a com-
plementary fashion, each boundary cell keeps track of the
two nodes which form the line segment cutting the cell.
Any node of the model can be picked at random to deter-
mine its associated edge and cell number. The model can
then be traced by following the neighboring cells indicated
by the edge number of the connected nodes.

2.3 Topological transformations

When a snake collideswith itself or with another snake,
or when asnake breaksintotwo or moreparts, atopol ogical
transformation must take place. 1n order to effect consistent
topologica changes, consistent decisions must be made
about disconnecting and reconnecting snake nodes. The
simplicia grid provides us with an unambiguous frame-
work from which to make these decisions. Each boundary
triangle can contain only one line segment to approximate
a closed snake in that triangle. This line segment must
intersect the triangle on two distinct edges. Furthermore,
each vertex of a boundary triangle can be unambiguously
classfied as inside or outside the snake. When a snake
collides with itself, or when two or more snakes collide,
there are some boundary triangles that will contain two or
more linesegments. We then choosetwo line segment end-
points on different edges of these boundary triangles and
connect them to form a new line segment. The two end-
points are chosen such that they are the closest end-points
to the outside vertices of the triangle and such that the
line segment joining them separates the inside and outside
vertices (Fig. 3). Any unused node points are discarded.

Figure 3: Intersection of two snakeswith“inside” grid cell
vertices marked. Snake nodes in triangles A and B are
reconnected as shown.

With this simple strategy, topological transformations are
handled automatically and consistently.

To determine inside vertices of a boundary triangle, we
use a simple, efficient ray casting technique. That is, we
count the number of intersections that a ray cast from a
triangle vertex aong its grid row makes with the enclosing
snake. An odd number of intersections indicates that the
vertex isinsidethe snake. Countingthe number of intersec-
tionsis simply amatter of alookup into an active edge-list
table constructed during each time step when a snake is
projected onto the grid.

Once the topological transformations have taken place,
we can runthroughthelist of nodes generated by the proce-
dure above and perform contour tracings viathegrid cdlls,
marking off al nodes visited during the tracings. In this
fashionwefind al new snakes generated by thetopol ogical
transformation phase and assign each a unique identifier.
The result is that at any time during the evolutionary pro-
cess, we can track, control, and interact with each snake
Created.

3 Experimental Results

In this section we discuss implementation issues and
present a number of experiments, using various synthetic
and real image datasets, to demonstrate the model capabili-
ties. Themost common method to i nitiatethe segmentation
process using topol ogically adaptable snakesisto have the
user draw an initial contour (or contours, if desired) within
the abjects of interest. Automatic initialization procedures
can aso be used. These contours are then closed and con-
verted to a parametric model representation using the su-
perposed grid. The snakes are then updated during each
time step by: caculating the forces on each snake node
and updating the node positionsusing the smplified equa-
tion (1), reparameterizing each snake (computing a new
set of nodes and springs) by finding the intersection points
of the snake with the grid, computing the new spring rest
lengths L;, performing topological transformations within
grid cells as necessary, and traversing each snake via the
grid cdlls, identifying al new snakes.

The reparameterization process can be performed every
iteration or every nth iteration to improve computational
efficiency. Furthermore, the grid can be turned off (and
on) at any time, in which case the topologically adaptable
snake reverts to the traditional snake formulation. In ad-
dition, different grid resolutions can be used at any time.
For example, a coarse resolution grid can be used initially
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Figure4: Segmentation of objectswith complex geometries
and topologies.

and as the a gorithm progresses, the grid resolution can be
increased. Finaly, in our implementation, we compute the
edges and vertices of grid cells as they are needed during
the evolution of the snake. Consequently, the only mem-
ory requirement for the grid is a pointer for each cell to
keep track of the snake segments cutting the cell. This
“on-the-fly” scheme alowsusto use pixel or even subpixel
resolution grids, if necessary, without incurring excessive
memory or computational costs.

3.1 Experiments with synthetic data

In the first experiment we demonstrate the “flowing”
property of the snake by segmenting a spira shaped object
(Figs. 4a—d). Wesuperposed onto a128x 128 pixel imagea
40 x 40 square cdll grid, where each cell isdivided intotwo
triangles. The parameter values for al of the experiments
with synthetic data sets are: At = 0.002, a; = 10.0,6; =
5.0,k = 20.0,x = 20.1 (note: « is the externa image
force scale factor):

In the second set of experiments we demonstrate the
topologica transformation capabilities of the model. In
Figures 4e-h, a snake flows around two “holes’ in the ob-
ject, collideswith itself and splitsinto three closed snakes.
In Figures4i-, severa snakes are initialized in the protru-
sions of the object, flow towards each other, and merge. In
Figures4m—p, the snake shrinks, wraps and finally splitsto
segment each object.

3.2 Segmentation of tool images
In this set of experiments we use the snake to automat-
ically segment various tools with a wide range of shapes

Figure 5: Segmentation of tools.

and topologies. In each example, a snake was manually
placed insidethetool image and al owed to expand outward
towardsthetool boundary. Notethat thefinal resultisrela-
tively independent of theinitia placement of the snake, d-
though parameter settings, such astheimageforce strength,
are still determined empirically. Figures 5a-h show the
fina results, with the original image on the left in each
case. The parameter values for al of the experiments are:
At = 0.002,a; = 30.0,b; = 20.0,k = 60.0, xk = 62.0. In
Figure 5b, the intermediate states of the evolving snakeare
shown.

3.3 Segmentation of retinal vasculature

Inthethirdset of experiments, we applied severa snakes
toa 1024 x 1024 retinal image (Fig. 6) in order to segment
thevascular “tree”, astructure with extended branches and
bifurcations. We initialized a snake at the source of each
major “branch” and performed the segmentation one branch
at atime. To enable a snake to flow along the narrow ves-
sels, a pixe-resolution grid was required. We also manu-
ally “freeze’” one haf of each snake at the branch source
to force it to flow into the branch structure. Note that the
arteriesand veinsdo not physically intersect as they appear
to do in this 2D image projection. Note aso that we did
not attempt to automatically identify vessel bifurcationsor
arterio-venous crossings. As a result, we manualy freeze
asnake once it beginsto flow into a crossing branch.
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Figure 6: Segmentation of the blood vessels in angiogram of retina. The top row is an image sequence showing a snake
flowing and branching along a vessal.
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Figure 7: Seed snakes growing, shrinking, merging, split-
ting and disappearing to automaticlly recover vertebra
phantom parts.

3.4 Automatic segmentation using seed snakes

In the final experiment, we demonstrate an interesting
automatic segmentation technique. The automatic segmen-
tation of images containing multiple objects of interest, ob-
jects embedded inside other objects, or objects containing
holes creates an initialization problem that cannot be re-
solved using a single snake. If the snakeisinitialized such
that it surrounds the objects of interest and then is made to
shrink and split around these objects, only the outer bound-
aries will be recovered. Conversely, to grow a snake from
within each object requires prior knowledge of the objects.
Malladi et al. [8] solved thisinitialization problem by us-
ing a two stage algorithm, capturing the outer boundaries
in the first stage and the inner boundaries in the second
stage. In our approach, similar to thethat taken in[10], we
uniformly distribute a set of small circular snake “ seeds”
over the image domain. These snakes then progressively
expand, shrink, merge, and/or split to recover larger and
larger regions of each object, including both the inner and
outer boundaries (Figs. 7a—f). If thereis no object of inter-
est toattract asnake, it will shrink and eventual ly disappear.
Thistechniqueresultsin asinglestage processand requires
Nno user interaction.

4 Conclusion

We have devel oped a 2D topol ogically adaptabl e snakes
model for image segmentation and object representation.
By combining a domain decomposition technique with
parametric snakes, we have considerably extended the ca-
pabilitiesof snakesand overcome many of their limitations
while keeping al of the traditional properties associated
with these models. By iteratively reparameterizing the
snake using the superposed grid, we have created asimple
and efficient automatic subdivisiontechnique as well as an
unambiguous framework for topological transformations,
allowing the model to be relatively independent of its ini-
tial placement and flow into complex shapes with complex
topologies in a stable manner. This domain decomposi-
tion framework does not unduly limit the shape recovery
scheme and conversion to and from a traditional snakes
model representation is simply a matter of discarding or

superposing the grid at any time during the evolutionary
process. Furthermore, our topologically adaptable snakes
mode has all of the functionality of the implicit level set
techniques described in [8, 2], but unlike these techniques
it does not require any mathematical machinery beyond
that of traditional snakes and retains their parametric for-
mulation. This allows users to control and interact with
the topologically adaptable model as they would with tra-
ditiona snakes. We have applied the model to various 2D
synthetic and real images in order to segment structures of
interest that have complicated shapes and topologies. The
mode is readily extensible to a three dimensional surface
representation based on atetrahedral decomposition of the
image domain.
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