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Abstract
This paper presents a topologically adaptable snakes

model for image segmentation and object representation.
The model is embedded in the framework of domain subdi-
vision using simplicial decomposition. This framework ex-
tends the geometric and topological adaptability of snakes
while retaining all of the features of traditionalsnakes, such
as user interaction, and overcoming many of the limitations
of traditionalsnakes. By superposing a simplicialgrid over
the image domain and using this grid to iteratively repa-
rameterize the deforming snakes model, the model is able
to flow into complex shapes, even shapes with significant
protrusions or branches, and to dynamically change topol-
ogy as necessitated by the data. Snakes can be created
and can split into multiple parts or seamlessly merge into
other snakes. The model can also be easily converted to
and from the traditional parametric snakes model repre-
sentation. We apply a 2D model to various synthetic and
real images in order to segment objects with complicated
shapes and topologies.

1 Introduction
Image segmentation remains a fundamental goal in com-

puter vision research. In recent years, segmentation tech-
niques which combine a local edge extraction operation
with the use of active contour models, or snakes [5], to per-
form a global region extraction have achieved considerable
success for certain applications [3, 1, 4, 6, 9]. These models
simulate elastic material which can dynamically conform
to object shapes in response to internal forces, external im-
age forces, and user specified constraints. The result is
an elegant method of linking sparse or noisy local edge
information into a coherent object description.

Traditional snakes models are not without limitations.
Most algorithms based on active contour models can only
handle geometrically and topologically simple objects.
They are inadequate for objects with deep cavities or multi-
part objects. Snakes are sensitive to their initial conditions
and therefore were designed as interactive models, allow-
ing the user to initialize them near objects of interest. The
internal energy constraints of snakes models can limit their
geometric flexibility and prevent them from representing
long tube-like shapes or shapes with significant protrusions
or bifurcations. Furthermore, the topology of the struc-
ture of interest must be known in advance since traditional
snakes models are parametric and are incapable of topolog-
ical transformations without additional machinery.

Several researchers have attempted to address some of
these limitations. Cohen [3] used an internal “inflation”
force to expand the snake past spurious edges towards the

real edges of the structure (as was done for deformable
surfaces in [11]), making the model less sensitive to ini-
tial conditions. Samadani [9] used a heuristic technique
based on deformation energies to split and merge active
contours. More recently, Malladi et al. [8] and Caselles
et al. [2] independently developed a topology independent
active contour scheme based on the modeling of propa-
gating fronts with curvature dependent speeds, where the
propagating front is viewed as an evolving level set of some
implicitly defined function.

Most active contour models are parametric models
whose parameterization is defined initially and does not
change automatically throughout the deformation process.
If the topology of an object is fixed and known a priori,
such models are the most appropriate since they will pro-
vide greater constraint. Implicit models on the other hand,
such as the formulation used in [8], provide topological and
geometric flexibility through their level sets. They are best
suited to the recovery of objects with complex shapes and
unknown topologies. Unfortunately, implicit models are
not as convenient as parametric models in terms of math-
ematical formulation, for shape analysis and visualization,
and for user interaction.

In this paper, we develop a parametric snakes model that
has the power of an implicit formulation by using a super-
posed simplicial grid to quickly and efficiently reparameter-
ize the model during the deformation process. That is, we
embed the traditional snakes model within the framework of
simplicial domain decomposition — a theoretically sound
decomposition method based on classical results from al-
gebraic topology. This framework enables our model to
maintain the traditional properties associated with snakes,
such as user interaction, while overcoming many of the
limitations described above. Using the simplicial grid to
iteratively reparameterize the model allows it to flow into
complex shapes and change its topology when necessary.
Multiple instances of the model can be dynamically created
or destroyed, or can seamlessly split or merge. Conversion
to and from the traditional snakes model formulation is sim-
ply a matter of discarding or imposing the grid at any time.
Thus, the grid provides a simple and effective means to ex-
tend the geometric and topological adaptability of snakes.

We apply our topologically adaptable snakes model to
segment objects with complex shapes and topologies that
cannot easily be segmented with traditional snakes. In
this paper, we consider the 2D case only, although the
model is readily extensible to deformable surfaces in higher
dimensions.
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2 Model Implementation
We define our snakes model as a closed elastic 2D con-

tour consisting of a set of nodes interconnected by ad-
justable springs [1]. The elastic contour model is a discrete
approximation to the traditional snakes model and retains
all of the snake properties. That is, an “inflation” force
pushes the model towards image edges until it is opposed
by external image forces, the internal spring forces act as
a smoothness constraint, users can interact with the model
using spring forces and other constraints, and the defor-
mation of the model is governed by discrete Lagrangian
equations of motion.

Unlike traditional snakes, the set of nodes and inter-
connecting springs of our model does not remain constant
during its motion. That is, we decompose the image domain
into a grid of discrete cells. As the model moves under the
influence of external and internal forces, we reparameterize
the model with a new set of nodes and springs by efficiently
computing the intersection points of the model with the
superposed grid. By reparameterizing the model at each
iteration of the evolutionary process, we create a simple,
elegant and automatic model subdivision technique as well
as an unambiguous framework for topological transforma-
tions. This allows the model to be relatively independent of
its initial placement and “flow” into complex shapes with
complex topologies in a stable manner. Furthermore, con-
version to and from a traditional parametric snakes model
representation is simply a matter of discarding or superpos-
ing the grid at any time during the evolutionary process.

2.1 Discrete snake model
A 2D deformable contour or snake can be thought of

as an energy minimizing spline in the � - � image plane.
We define a discrete snake as a set of � nodes indexed by���

1 �����	�
�
� . We associate with these nodes time varying
positions �
������� ��� � ���������
����������� and a mass ��� along with
compression forces which make the snake act like a series
of unilateral springs that resist deformation from a rest
length, rigidity forces which make the snake act like a thin
wire that resists bending, and external forces that act in the
image plane. We connect the nodes in series using nonlinear
springs to form a discrete dynamic system whose behavior
is governed by the set of ordinary differential equations of
motion

��� ¨������� � ˙������! !! ���#" "" � �%$ ��� (1)

where ¨� � is the acceleration of node
�
, ˙� � is its velocity, � �

is the mass, � � is a damping coefficient that controls the rate
of dissipation of the kinetic energy of the nodes and

$ � is an
external force that attracts the model toward salient image
edges [5]. The force
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makes the snake resist expansion or compression, where, � � � �10 1 - � � and the caret denotes a unit vector,
& � is

the spring stiffness and (	� �32 , � 2 -%45� , where 45� is the
spring “rest” length. Since a new set of model nodes and
springs is computed during every iteration, we update these
rest lengths by setting them equal to the new spring lengths.

Figure 1: Simplicial approximation of a contour model
using a Freudenthal triangulation. The model nodes (inter-
section points) are marked.

The “rigidity” forces
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make the snake resist bending. When computing this force,
we “normalize” the spring lengths to account for the uneven
node spacing. Finally, an “inflation” force, :;� �=<?> � , is
used to push the model towards image edges until it is op-
posed by external image forces, where

<
is the force scale

factor and
> � is the unit normal to the contour at node

�
.

The use of an inflation force essentially eliminates the need
for an inertial force term. For this reason, we have simpli-
fied the equations of motion, while still preserving useful
dynamics, by setting the mass density �@� in equation (1)
to zero to obtain a model which has no inertia and which
comes to rest as soon as the applied forces balance the in-
ternal forces. We integrate this first-order dynamic system
forward through time using an explicit Euler method.

2.2 Simplicial decomposition
The grid of discrete cells used to approximate the snakes

model is an example of space partitioning by simplicial de-
composition. There are two main types of domain decom-
position methods: non-simplicial and simplicial. Most
nonsimplicial methods employ a regular tessellation of
space. The marching cubes algorithm [7] is an example
of this type. These methods are fast and easy to implement
but they cannot be used to represent surfaces or contours un-
ambiguously without the use of a disambiguation scheme.

Simplicial methods, on the other hand, are theoretically
sound because they rely on classical results from algebraic
topology. In a simplicial decomposition, space is parti-
tioned into cells defined by open simplices, where an A -
simplex is the simplest geometrical object of dimension A .
A simplicial cell decomposition is also called a triangula-
tion. The simplest triangulation of Euclidean space BDC is
the Coxeter-Freudenthal triangulation (Fig. 1). It is con-
structed by subdividing space using a uniform cubic grid
and the triangulation is obtained by subdividing each cube
into A ! simplices.

Simplicial decompositions provide an unambiguous
framework for the creation of local polygonal approxima-
tions of a contour or surface model. In an A -simplex, the
negative vertices can always be separated from the positive
vertices by a single plane; thus an unambiguous polygonal-
ization of the simplex always exists and as long as neigh-
boring cubes are decomposed so that they share common
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Figure 2: Cell classification.

edges (or faces in 3D) at their boundaries, a consistent poly-
gonization will result. The set of simplices (or triangles in
2D) of the grid that intersect the surface or contour (the
boundary triangles) form a two dimensional combinatorial
manifold that has as its dual a one dimensional manifold
that approximates the contour. The one dimensional mani-
fold is constructed from the intersection of the true contour
with the edges of each boundary triangle, resulting in one
line segment that approximates the contour inside this tri-
angle (Fig. 1). The contour intersects each triangle in
two distinct points, each located on a different edge. The
set of all these line segments constitute the combinatorial
manifold that approximates the true contour.

The cells of the triangulationcan be classified in relation
to the partitioning of space by a closed contour model by
testing the “sign” of the cell vertices during each time step.
If the signs are the same for all vertices, the cell must
be totally inside or outside the contour. If the signs are
different, the cell must intersect the contour (Fig. 2).

The simplicial decomposition of the image domain also
provides a framework for efficient boundary traversal or
contour tracing. This property is useful when models inter-
sect and topological changes must take place. Each node
stores the edge and cell number it intersects and in a com-
plementary fashion, each boundary cell keeps track of the
two nodes which form the line segment cutting the cell.
Any node of the model can be picked at random to deter-
mine its associated edge and cell number. The model can
then be traced by following the neighboring cells indicated
by the edge number of the connected nodes.
2.3 Topological transformations

When a snake collides with itself or with another snake,
or when a snake breaks into two or more parts, a topological
transformation must take place. In order to effect consistent
topological changes, consistent decisions must be made
about disconnecting and reconnecting snake nodes. The
simplicial grid provides us with an unambiguous frame-
work from which to make these decisions. Each boundary
triangle can contain only one line segment to approximate
a closed snake in that triangle. This line segment must
intersect the triangle on two distinct edges. Furthermore,
each vertex of a boundary triangle can be unambiguously
classified as inside or outside the snake. When a snake
collides with itself, or when two or more snakes collide,
there are some boundary triangles that will contain two or
more line segments. We then choose two line segment end-
points on different edges of these boundary triangles and
connect them to form a new line segment. The two end-
points are chosen such that they are the closest end-points
to the outside vertices of the triangle and such that the
line segment joining them separates the inside and outside
vertices (Fig. 3). Any unused node points are discarded.

A

B

A

B

Figure 3: Intersection of two snakes with “inside” grid cell
vertices marked. Snake nodes in triangles A and B are
reconnected as shown.

With this simple strategy, topological transformations are
handled automatically and consistently.

To determine inside vertices of a boundary triangle, we
use a simple, efficient ray casting technique. That is, we
count the number of intersections that a ray cast from a
triangle vertex along its grid row makes with the enclosing
snake. An odd number of intersections indicates that the
vertex is inside the snake. Counting the number of intersec-
tions is simply a matter of a lookup into an active edge-list
table constructed during each time step when a snake is
projected onto the grid.

Once the topological transformations have taken place,
we can run through the list of nodes generated by the proce-
dure above and perform contour tracings via the grid cells,
marking off all nodes visited during the tracings. In this
fashion we find all new snakes generated by the topological
transformation phase and assign each a unique identifier.
The result is that at any time during the evolutionary pro-
cess, we can track, control, and interact with each snake
created.

3 Experimental Results
In this section we discuss implementation issues and

present a number of experiments, using various synthetic
and real image datasets, to demonstrate the model capabili-
ties. The most common method to initiate the segmentation
process using topologically adaptable snakes is to have the
user draw an initial contour (or contours, if desired) within
the objects of interest. Automatic initialization procedures
can also be used. These contours are then closed and con-
verted to a parametric model representation using the su-
perposed grid. The snakes are then updated during each
time step by: calculating the forces on each snake node
and updating the node positions using the simplified equa-
tion (1), reparameterizing each snake (computing a new
set of nodes and springs) by finding the intersection points
of the snake with the grid, computing the new spring rest
lengths 4 � , performing topological transformations within
grid cells as necessary, and traversing each snake via the
grid cells, identifying all new snakes.

The reparameterization process can be performed every
iteration or every A th iteration to improve computational
efficiency. Furthermore, the grid can be turned off (and
on) at any time, in which case the topologically adaptable
snake reverts to the traditional snake formulation. In ad-
dition, different grid resolutions can be used at any time.
For example, a coarse resolution grid can be used initially
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Figure 4: Segmentation of objects with complex geometries
and topologies.

and as the algorithm progresses, the grid resolution can be
increased. Finally, in our implementation, we compute the
edges and vertices of grid cells as they are needed during
the evolution of the snake. Consequently, the only mem-
ory requirement for the grid is a pointer for each cell to
keep track of the snake segments cutting the cell. This
“on-the-fly” scheme allows us to use pixel or even subpixel
resolution grids, if necessary, without incurring excessive
memory or computational costs.
3.1 Experiments with synthetic data

In the first experiment we demonstrate the “flowing”
property of the snake by segmenting a spiral shaped object
(Figs. 4a–d). We superposed onto a 128 � 128 pixel image a
40 � 40 square cell grid, where each cell is divided into two
triangles. The parameter values for all of the experiments
with synthetic data sets are: ∆� � 0 � 002 � & � � 10 � 0 � 6 � �
5 � 0 � <��

20 � 0 ��� �
20 � 1 (note: � is the external image

force scale factor):
In the second set of experiments we demonstrate the

topological transformation capabilities of the model. In
Figures 4e–h, a snake flows around two “holes” in the ob-
ject, collides with itself and splits into three closed snakes.
In Figures 4i–l, several snakes are initialized in the protru-
sions of the object, flow towards each other, and merge. In
Figures 4m–p, the snake shrinks, wraps and finally splits to
segment each object.
3.2 Segmentation of tool images

In this set of experiments we use the snake to automat-
ically segment various tools with a wide range of shapes

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Segmentation of tools.

and topologies. In each example, a snake was manually
placed inside the tool image and allowed to expand outward
towards the tool boundary. Note that the final result is rela-
tively independent of the initial placement of the snake, al-
thoughparameter settings, such as the image force strength,
are still determined empirically. Figures 5a–h show the
final results, with the original image on the left in each
case. The parameter values for all of the experiments are:
∆� � 0 � 002 � & � � 30 � 0 � 6 � � 20 � 0 � < �

60 � 0 ��� �
62 � 0. In

Figure 5b, the intermediate states of the evolving snake are
shown.

3.3 Segmentation of retinal vasculature
In the thirdset of experiments, we applied several snakes

to a 1024 � 1024 retinal image (Fig. 6) in order to segment
the vascular “tree”, a structure with extended branches and
bifurcations. We initialized a snake at the source of each
major “branch” and performed the segmentation one branch
at a time. To enable a snake to flow along the narrow ves-
sels, a pixel-resolution grid was required. We also manu-
ally “freeze” one half of each snake at the branch source
to force it to flow into the branch structure. Note that the
arteries and veins do not physically intersect as they appear
to do in this 2D image projection. Note also that we did
not attempt to automatically identify vessel bifurcations or
arterio-venous crossings. As a result, we manually freeze
a snake once it begins to flow into a crossing branch.
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(a) (b) (c) (d) (e)

Figure 6: Segmentation of the blood vessels in angiogram of retina. The top row is an image sequence showing a snake
flowing and branching along a vessel.
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Figure 7: Seed snakes growing, shrinking, merging, split-
ting and disappearing to automaticlly recover vertebral
phantom parts.

3.4 Automatic segmentation using seed snakes
In the final experiment, we demonstrate an interesting

automatic segmentation technique. The automatic segmen-
tation of images containing multiple objects of interest, ob-
jects embedded inside other objects, or objects containing
holes creates an initialization problem that cannot be re-
solved using a single snake. If the snake is initialized such
that it surrounds the objects of interest and then is made to
shrink and split around these objects, only the outer bound-
aries will be recovered. Conversely, to grow a snake from
within each object requires prior knowledge of the objects.
Malladi et al. [8] solved this initialization problem by us-
ing a two stage algorithm, capturing the outer boundaries
in the first stage and the inner boundaries in the second
stage. In our approach, similar to the that taken in [10], we
uniformly distribute a set of small circular snake “seeds”
over the image domain. These snakes then progressively
expand, shrink, merge, and/or split to recover larger and
larger regions of each object, including both the inner and
outer boundaries (Figs. 7a–f). If there is no object of inter-
est to attract a snake, it will shrink and eventually disappear.
This technique results in a single stage process and requires
no user interaction.

4 Conclusion
We have developed a 2D topologically adaptable snakes

model for image segmentation and object representation.
By combining a domain decomposition technique with
parametric snakes, we have considerably extended the ca-
pabilities of snakes and overcome many of their limitations
while keeping all of the traditional properties associated
with these models. By iteratively reparameterizing the
snake using the superposed grid, we have created a simple
and efficient automatic subdivision technique as well as an
unambiguous framework for topological transformations,
allowing the model to be relatively independent of its ini-
tial placement and flow into complex shapes with complex
topologies in a stable manner. This domain decomposi-
tion framework does not unduly limit the shape recovery
scheme and conversion to and from a traditional snakes
model representation is simply a matter of discarding or

superposing the grid at any time during the evolutionary
process. Furthermore, our topologically adaptable snakes
model has all of the functionality of the implicit level set
techniques described in [8, 2], but unlike these techniques
it does not require any mathematical machinery beyond
that of traditional snakes and retains their parametric for-
mulation. This allows users to control and interact with
the topologically adaptable model as they would with tra-
ditional snakes. We have applied the model to various 2D
synthetic and real images in order to segment structures of
interest that have complicated shapes and topologies. The
model is readily extensible to a three dimensional surface
representation based on a tetrahedral decomposition of the
image domain.
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