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Abstract

This paper presents a physics-based approach to anatomical surface segmentation,
reconstruction, and tracking in multidimensional medical images. The approach makes
use of a dynamic \balloon" model|a spherical thin-plate under tension surface spline
which deforms elastically to �t the image data. The �tting process is mediated by
internal forces stemming from the elastic properties of the spline and external forces
which are produced from the data. The forces interact in accordance with Lagrangian
equations of motion that adjust the model's deformational degrees of freedom to �t
the data. We employ the �nite element method to represent the continuous surface
in the form of weighted sums of local polynomial basis functions. We use a quintic
triangular �nite element whose nodal variables include positions as well as the �rst
and second partial derivatives of the surface. We describe a system, implemented on
a high performance graphics workstation, which applies the model �tting technique to
the segmentation of the cardiac LV surface in volume (3D) CT images and LV tracking
in dynamic volume (4D) CT images to estimate its nonrigid motion over the cardiac
cycle. The system features a graphical user interface which minimizes error by a�ord-
ing specialist users interactive control over the dynamic model �tting process.

Keywords: 3D/4D Medical Image Analysis, Deformable Models, Finite Elements,
Dynamics, Cardiac LV Segmentation, Nonrigid Motion Tracking, Visualization, Inter-
action.

1 Introduction

CT, MRI, PET and other noninvasive medical imaging technologies can provide exceptional
views of internal anatomical structures, but the computer aided visualization, manipula-
tion, and quantitative analysis of the multidimensional image data they produce is still
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limited. State-of-the-art medical imagers generate massive databases of static volume (3D)
and dynamic volume (4D) images. These data sets, which usually su�er from sampling
artifacts, spatial aliasing, and noise, are essentially \blocks of granite" with meaningful em-
bedded structures. An important problem is to extract the surface elements belonging to an
anatomical structure (the segmentation step) and to integrate these surface elements into
a globally coherent surface model of the structure (the reconstruction step). Certain diag-
nostic procedures also require the tracking and deformation analysis of nonrigidly moving
anatomical surfaces; e.g., the stretching of the left ventricle (LV) during the cardiac cycle
is directly related to heart condition. The ease and accuracy of such procedures can be
critically dependent upon the model used. Dynamic models are needed which are robust
against noise-corrupted data and which are capable of accurately representing the complex
geometries of anatomical surfaces while permitting the quantitative measurement of highly
nonrigid tissue kinematics.

This paper describes a physics-based modeling approach that addresses the surface seg-
mentation and reconstruction problems, as well as the geometric analysis and nonrigid mo-
tion estimation problems. We develop a dynamic, elastically deformable surface model whose
deformation is governed by basic laws of nonrigid motion. The formulation of the motion
equations includes a strain energy, simulated forces, and other physical quantities. The sur-
face strain energy stems from a thin-plate under tension variational spline. Deformation
results from the action of internal spline forces which impose surface continuity constraints
and external forces which �t the surface to the image data. The inherently dynamic formu-
lation of the model makes it suitable both for static anatomical surface reconstruction and
for problems involving the reconstruction and tracking of nonrigidly moving organs.

To deal with closed anatomical surfaces, we formulate a deformable \balloon" model that
is topologically isomorphic to a sphere. We employ the �nite element method to spatially
discretize the balloon, uniformly tessellating it into a set of connected triangular element
domains. The �nite element method provides an analytic, piecewise polynomial surface
representation that is (C1) continuous across triangles. We use a quintic �nite element whose
nodal variables include not only the nodal positions, but also the �rst and second parametric
partial derivatives of the surface. The element is naturally suited to the surface energy
functional because these same partial derivatives occur in the thin-plate under tension energy
expression. The existence of parametric derivative nodal variables facilitates the computation
of the di�erential properties of the modeled surface. In particular, the nodal variables and
their time derivatives can be useful for computing the surface curvature, enclosed volume,
and motion properties of anatomical surfaces.

We have implemented a system on a high performance graphics workstation which applies
the dynamic model �tting technique to the segmentation of the LV surface in cardiac volume
(3D) CT images and LV tracking in dynamic volume (4D) CT images in order to estimate
nonrigid LV motion over the cardiac cycle. The system includes a graphical user interface
which provides interactive visualization and a�ords control over the model �tting process.
The interface allows a user to select the initial size and location of the model and to exert
interactive forces on the model as it deforms to �t the data. This type of interactive control is
desirable in medical image analysis applications where there is low tolerance for inaccuracy,
because it allows specialist users to exploit their knowledge to correct model �tting errors.
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2 Background

The literature on segmentation and surface reconstruction in 3D medical images includes
both manual and automatic techniques. The dominant manual method is slice-editing. In
manual slice-editing a skilled operator, using a computer mouse, pen, or trackball traces the
region of interest on each slice of the volume. This labor intensive method su�ers from many
drawbacks, such as di�culties in achieving reproducible segmentation results, di�culties in
comparing measurements from di�erent operators, and di�culties deducing 3D structure
from 2D slices. The technique can be speeded up and made more reproducible, however,
through the use of contour extraction methods such as interactive snakes [1, 2].

The traditional automatic segmentation methods, such as density thresholding and the
application of (2D or 3D) edge operators, have many well-known problems. Edge detection
and the more recent marching cube [3] technique reduce volume data into something that
is more readily displayed through 3D graphics, such as surface elements. However, they
employ only the local properties of the image data; hence, they raise the di�cult problem of
establishing the connectivity of surface trace elements in order to assemble sensible global
surface structures [4]. These di�culties have prompted some researchers to settle for merely
visualizing the volume data in its original form using morphology [5] or volume rendering
techniques [6]. Unlike global surface models, however, these voxel-display representations do
not attempt to capture the geometric structure of anatomical structures; hence, they do not
treat the data in a manner consistent with the physical properties of the imaged objects.

Deformable surface models are a promising approach to extracting anatomically mean-
ingful structures from volume data. The dynamic form of the deformable model �tting
technique described in this paper was �rst introduced by Terzopoulos, Witkin, and Kass [7].
They proposed a dynamic deformable cylinder model constructed from generalized splines,
along with force �eld techniques to �t the model to image data. This dynamic approach is
being pursued by several researchers in computational vision [8, 9, 10, 11, 12, 13, 14]. The
use of �nite element representations for variational problems in vision were �rst explored
in [15]. Our formulation applies the �nite element method to the thin-plate under tension
spline proposed in [16] in order to derive discrete nonrigid dynamics equations. The �nite
element representation yields piecewise continuous deformable surface models that generally
require fewer variables for similar accuracy compared to �nite di�erence approaches.

Our work is related to that of Young [17][18] and Cohen and Cohen [19, 20] who also
develop 3D deformable surface models which are based on the thin-plate under tension spline.
Young �ts an open bicubic Hermitian �nite element based surface to the 3D locations of the
coronary arteries at diastasis. The parameters of the time{varying displacement �eld were
then �tted to the tracked displacements of the bifurcation points of the coronary arteries.
Cohen and Cohen �t a cylindrical, bicubic Hermitian �nite element based surface to MRI
images of the LV. Another relevant deformable model is the discrete model developed by
Miller et al. [21], which is subdivided and �tted to CT volume images by a relaxation
process that minimizes a set of constraints such as the distance to the data or the local
curvature of the model.

In our work we develop a closed 3D surface model based on a quintic triangular �nite
element with position and derivative nodal variables. The model begins as a uniformly tessel-
lated icosahedron which may subdivide repeatedly to attain the desired geometric resolution.
Our model is dynamic in the sense that it undergoes deformations that are governed by non-
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(a) (b) (c)

Figure 1: Balloon models with varying elasticity and pulled by a spring point force.

rigid Lagrangian mechanics. Note, however, that although these dynamics equations serve
well in model �tting and tracking using multidimensional data sets, we make no attempt to
model the actual biomechanical properties of the anatomical structure under consideration
(such as the cardiac LV; see, e.g., [22]).

3 Dynamic Deformable Balloon Model

The balloon model that we develop in this paper is constructed of the simulated thin-plate
material under tension. The deformation energy of the material serves as a constraint which
compels the model to vary smoothly almost everywhere. The balloon is represented as a
vector-valued parametric function x(u; v) = [x(u; v); y(u; v); z(u; v)]> where vector x repre-
sents the positions of material points (u; v) relative to a reference frame in Euclidean 3-space.

The deformation energy of the thin-plate under tension material is given by the energy
functional

Ep(x) =
Z Z
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du dv: (1)

Ep is a controlled-continuity spline de�ned in [16]. The nonnegative weighting functions
�ij(u; v) and �ij(u; v) control the elasticity of the material. The �10 and �01 functions control
the tensions in the u and v directions, respectively, while the �02 and �20 functions control
the corresponding bending rigidities, and the �11 function controls the twisting rigidity.
Increasing the �ij has a tendency to decrease the surface area of the material, while increasing
the �ij tends to make it less 
exible. In general, the weighting functions may be used to
introduce depth and orientation discontinuities in the material. In this paper, however, we
do not make use of this capability and set the functions to constant values �ij(u; v) = �ij

and �ij(u; v) = �ij. Figure 1 shows the thin plate under tension balloon pulled radially by
a spring point force (in (a) �ij = 0:8 and �ij = 0, in (b) �ij = �ij = 0:5, and in (c) �ij = 0
and �ij = 0:8):

A general and elegant approach to �tting deformable surface models to data, especially
when the data are time-varying, is to make the models dynamic. A dynamic formulation
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imposes a natural temporal continuity on the model, thereby permitting a smoothly animated
display of the data �tting process. It also allows a user to interact with the model by applying
constraint forces to pull it out of local minima towards the correct solution.

In a Lagrangian dynamics formulation, the positions of material points becomes a time-
dependent function x(u; v; t) and we imbue the simulated material with mass and damping
densities. The deformation energy yields internal elastic forces, and Ep(x) is minimized
when these forces equilibrate against externally applied forces and the model stabilizes:
@x=@t = @2x=@t2 = 0.

The dynamic behavior of the balloon model during the �tting process is governed by the
second-order partial di�erential equations

�
@2x

@t2
+ 


@x

@t
+ �xEp = f ; (2)

where the �rst term represents the inertial forces due to the mass density �(u; v), the second
term represents the damping forces due to the damping density 
(u; v), the third term
represents the elastic force which resist deformation, and �nally f(u; v; t) represents the
external forces derived from the image data. The (generally nonlinear) data forces may be
formalized as stemming from a data functional

Ed(x) = �
Z Z

x>f du dv: (3)

4 Finite Element Representation

The �nite di�erence method or the �nite element method are applicable to computing nu-
merical solutions to the function x(u; v; t). Finite di�erence solutions approximate the con-
tinuous function x as a set of discrete nodes in space. A disadvantage of the �nite di�erence
approach is that the continuity of the solution between nodes is not made explicit. The
�nite element method, on the other hand, provides continuous surface approximations; that
is, the method approximates the unknown function x in terms of combinations of local basis
functions [23].

To apply the �nite element method to our models, we tessellate the continuous material
domain (u; v) into a mesh of M element subdomains Ej. We approximate x as a weighted
sum of piecewise polynomial basis functions Ni:

x(u; v; t) � x̂(u; v; t) =
nX
i=1

Ni(u; v)qi(t); (4)

where qi is a vector of nodal variables associated with mesh node i.
Substituting (4) into (2) yields the discrete equations of motion

M�q+C _q+Kq = fq; (5)

with q = [q>1 ; : : : ;q
>

i ; : : : ;q
>

n ]
>, where the mass matrixM, damping matrix C, and sti�ness

matrix K are sparse, symmetric matrices and vector fq are nodal data forces. These global

matrices may be assembled from their associated local element matrices by expanding each
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element matrix appropriately into a q � q matrix and then summing:

M =
MX
j=1

M
j
q�q; C =

MX
j=1

C
j
q�q; K =

MX
j=1

K
j
q�q; fq =

MX
j=1

f jq; (6)

where Mj , Cj , Kj, and f jq are element mass, damping, and sti�ness matrices, and nodal
data forces associated with element Ej; j = 1; : : : ;M .

We now derive expressions for Mj, Cj , Kj, and f jq from element kinetic and potential
energy functionals. Let xj(u; v; t) be the position of material point (u; v) within Ej , and let
qj denote the concatenation of nodal variables for all the nodes of Ej. Following (4), we
write the element trial function

x̂j(u; v; t) =Nj(u; v)qj(t) � xj(u; v; t); (7)

where Nj are the element shape functions. Recall that the basis functions Ni are obtained
by superposing the shape functions associated with node i. The element velocity is @x̂j=@t =
Nj _qj, where _qj(t) is the rate of change of the nodal variables.

The kinetic energy associated with element Ej is

1

2

Z Z
Ej

�
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>
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@t
du dv =

1

2
_qj>

�Z Z
Ej

�Nj>Nj du dv
�
_qj =

1

2
_qj>Mj _qj; (8)

where the element mass matrix is given by

Mj =
Z Z
Ej

�Nj>Nj du dv: (9)

We introduce a simple velocity-proportional kinetic energy dissipation according to the
(Raleigh) dissipation functional

1

2

Z Z
Ej



@x̂j>

@t

@x̂j

@t
du dv =

1

2
_qj>Cj _qj: (10)

The element damping matrix is proportional to the mass matrix and is given by

Cj =
Z Z
Ej


Nj>Nj du dv: (11)

According to (1) the element deformation matrix may be expressed as

Ejp(x) =
Z Z
Ej

���j
>

���j du dv; (12)
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where the strain vector is

���j =

2
4@xj>

@u
;
@xj

>

@v
;
@2xj

>

@u2
;
@2xj

>

@u@v
;
@2xj

>

@v2

3
5
>

= Lxj (13)

and the stress vector is

���j =

2
664
�j
10I 0 0 0 0
0 �j

01I 0 0 0
0 0 �j

20I 0 0
0 0 0 �j

11I 0
0 0 0 0 �j

02I

3
775 ���j = Dj���j ; (14)

with I a 3� 3 unit matrix. Using (7), we can write

���j = LNjqj = Bjqj; (15)

where Bj is the element strain matrix. Inserting the expressions for ���j and ���j into (12) yields

Ejp(x) = qj
>

Kjqj; (16)

where the element sti�ness matrix is given by

Kj =
Z Z
Ej

Bj>DjBj du dv: (17)

Finally, according to (3), the potential energy in element Ej due to data forces f j(u; v; t)
is

�
Z Z
Ej

x̂j>f j du dv = �qj
>

Z Z
Ej

Nj>f j du dv = �qj
>

f jq ; (18)

where the nodal data forces are given by

f jq =
Z Z
Ej

Nj>f j du dv: (19)

5 Model Structure

The balloon model is a closed surface in Euclidean 3-space which is topologically isomorphic
to a sphere. We initially discretize the balloon in the material coordinates (u; v) by tessellat-
ing it into a set of 20 triangular elements to form an icosahedron. We chose the icosahedron
because it has a simple representation in material coordinates and it has a regular structure
in Euclidean 3-space, with each of its 12 nodes connected to �ve neighboring nodes.

The parametric equation which initially maps the material (ui; vi) coordinates of the 12
icosahedron nodes into 3-space is given by

x(ui; vi) = a

0
B@

cosui cos vi
cosui sin vi
sinui

1
CA ; (20)
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where ��=2 � v � �=2 and �� � u < � and a � 0 is a radius parameter.

5.1 Triangular C1 Finite Element
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(u ,v )1 1
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Figure 2: C1 continuous triangular element.

We use a �fth-order triangular �nite element to implement the balloon model [23]. In view
of the form of the deformation energy (1) which leads to the strain vector (13), it is natural
to choose as nodal variables x, along with its �rst and second parametric partial derivatives
evaluated at each node i. The nodal variable vector for the balloon is therefore

qi(t) =

2
4x>i ;
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>

i

;

 
@x

@v

!
>

i

;

 
@2x

@u2

!
>

i

;

 
@2x

@u@v

!
>

i

;

 
@2x

@v2

!
>

i

3
5
>

: (21)

Figure 2 shows the C1 continuous element de�ned locally in the dimensionless oblique
coordinates (�; �). In this local coordinate system the material coordinates (u; v) can be
expressed as

u = (1� � � �)u1 + �u2 + �u3; (22)

v = (1� � � �)v1 + �v2 + �v3;

where (ui; vi) are the material coordinates at the nodes (as numbered in the �gure), and the
local nodal variable vector becomes

qi�(t) =
h
x>i ; (x�)

>

i
; (x�)

>

i
; (x��)

>

i
; (x��)

>

i
; (x��)

>

i

i>
: (23)

The transformation from global to local coordinates is

qi = Tiqi� (24)

where the transformation matrix Ti is speci�ed in [23] (pp. 100{101).
Concatenating the qi� at each of the three nodes of element j, we obtain the 18-dimensional

element nodal vector qj� = [q>1�;q
>

2�
;q>3�]

>. According to (7), we can write the local trial func-
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tion as
x̂j(�; �; t) = Nj(�; �)qj�(t): (25)

The nodal shape functions Ni(�; �) which are contained in the 18 � 18 matrix Nj are, for
node 1

N1 = �2(10�� 15�2 + 6�3 + 30��(� + �)); N2 = ��2(3� 2�� 3�2 + 6��)
N3 = ��2(3 � 2�� 3�2 + 6��); N4 = 1

2
�2�2(1� � + 2�)

N5 = ���2; N6 = 1

2
�2�2(1 + 2� � �);

for node 2,

N7 = �2(10� � 15�2 + 6�3 + 15�2�); N8 = �2

2
(�8� + 14�2 � 6�3 � 15�2�)

N9 = �2�

2
(6� 4� � 3� � 3�2 + 3��); N10 = �2

4
(2�(1� �)2 + 5�2�)

N11 = �2�

2
(�2 + 2� + � + �2 � ��); N12 = �2�2�

4
+ �3�2

2
;

and for node 3,

N13 = �2(10� � 15�2 + 6�3 + 15�2�); N14 = ��2

2
(6� 3� � 4� � 3�2 + 3��)

N15 = �2

2
(�8� + 14�2 � 6�3 � 15�2�); N16 = �2�2�

4
+ �2�3

2

N17 = ��
2

2
(�2 + � + 2� + �2 � ��); N18 = �

2

4
(2�(1 � �)2 + 5�2�);

where � = 1� � � �.
Note that the polynomial basis of the element is complete up to fourth-order terms and

contains three �fth-order terms [23]. The trial functions are C1 within elements and they
ensure C1 continuity between elements. Since (1) contains up to second order derivatives,
the element is conforming.

The shape functions are expressed in terms of the local coordinates (�; �) and it is conve-
nient to work with these coordinates. Thus, the required derivatives of the shape functions
in the strain matrix B are computed using repeated applications of the chain rule and equa-
tion (23). Also, a function f(u; v) may be integrated over Ej by transforming to the local
coordinate system as follows:

Z Z
Ej

f(u; v) du dv =
Z Z
Ej

f(u(�; �); v(�; �)) detJ d� d�; (26)

where

J =

"
@u
@�

@v
@�

@u

@�

@v

@�

#
(27)

is the Jacobian matrix. These integrals are approximated using Gauss-Legendre quadrature
rules [23].

5.2 Model Re�nement

Our implementation allows the balloon model to be re�ned during the �tting process by
subdividing the triangular elements. Each element spawns 4 child elements by connecting
the midpoints of its 3 edges (Fig. 3). This process may be applied recursively to each child
element. The connectivity of all new vertices formed in this fashion is six, while the original
12 vertices of the icosahedron remain �ve-connected. Thus a low resolution model may be
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Figure 3: Subdividing an equilateral triangular element.
Four smaller elements are formed by connecting the midpoints of the edges.

(a) 20 triangles (b) 80 triangles (c) 320 triangles

Figure 4: Balloon model mesh in Euclidean 3-space at three subdivision levels.

initially �t to the data, e�ciently reconstructing the rough overall shape, and subsequently
re�ned in steps as necessary to capture the detail. This approach greatly reduces the overall
computation time required for reconstruction.

Since each global subdivision of the balloon model increases the number of element nodes
by approximately fourfold, this scheme has its limits. A better scheme is to locally subdivide
the model in areas where the shape implied by the data varies considerably. Local subdivision
is not pursued in this paper.

6 Applied Forces

Our dynamic model �tting paradigm applies data constraints to the model as external force
distributions f(u; v; t). The contribution of the force distribution to each element Ej is
converted through (19) to generalized forces f jq associated with the nodal variables of the
element. Two types of data forces are applied to the balloon model{ forces obtained through
gradients of image potential functions and forces based on distances between data points
and the model surface.
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6.1 3D Image Forces

When extracting and reconstructing surfaces from 3D image data, we design forces that
localize salient image features. For example, to attract our model towards signi�cant 3D
intensity edges (gradients) in some region of an image function I(x; y; z) we construct a 3D
potential function

P (x; y; z) = �1 kr(G� � I)k+ �2 kOMD � Ik (28)

whose potential valleys (minima) coincide with the object surface [7]. In the �rst term on the
right hand side of (28), G� denotes a 3D Gaussian smoothing �lter of characteristic width �.
This �lter broadens or narrows the potential valleys of this term thus determining the extent
of the region of attraction of the intensity gradient. Typically, the attraction has a relatively
short range. In the second term, a 3D edge detector, the 3D Monga-Deriche (MD) operator
[24], is applied to the image data to produce a 3D intensity edge �eld. The potential valleys
of this term tend to be narrow and deep, complementing (and coinciding with) the wider
but more shallow valleys produced by the �rst term. A weighted combination of these terms
is formed so the model will \slide down" the shallow valleys and then drop into the deeper
valleys thus locking onto image edges.

The potential function produces a force distribution

f(x) = �
rP (x)

krP (x)k
(29)

on the model, where � controls the strength of the force. We normalize the image force as for
better numerical stability [10]. Consequently, all signi�cant edge voxels, including spurious
edges, will attract the model equally. However, once the model converges towards the true
3D edges of the object, the smoothing e�ect of the model will give it a tendency to ignore
spurious 3D edges.

Note that to compute rP at any model point x(u; v) from a discrete 3D image data set
I(i; j; k), we tri-linearly interpolate I(x) using values at the eight surrounding pixels.

6.2 Balloon In
ation Force

When extracting object surfaces from 3D image data, the balloon model must �rst be ini-
tialized within the object. If the model is not close enough to the surface of the object, the
short-range image forces de�ned previously may not attract it. For this reason, an internal
pressure force is used to \in
ate" the balloon model towards the object surface [7] [10]. The
force takes the form

f = �1n(u; v); (30)

where n(u; v) is the unit normal vector to the model surface at the point x(u; v), and �1 is
the amplitude of this force. If �1 is negative, the force will de
ate the balloon. We usually
set the image force scale parameter � and �1 to be of the same order, with � slightly larger
than �1 so that a signi�cant 3D edge will stop the in
ation, but with �1 large enough for
the model to pass through weak or spurious edges.
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6.3 User and Constraint Forces

Accurate measurement of medical image structures is important in a clinical setting. For this
and other reasons, visualization and manual interaction are likely to remain essential in 3D
biomedical image scenarios. Our dynamic modeling approach provides a facile interface to
the models through the use of force interaction tools. For example, as the model is deforming,
the user may use the mouse to specify spring forces which pull the model towards signi�cant
image features, or to specify \pins" which constrain the model to interpolate �ducial features
in the data that a specialist can identify.

Both the mouse and pin forces are implemented as long-range spring-like point forces

f(u; v) = � kp� x(up; vp)k (31)

proportional to the separation between the mouse or pin point p in space and the point of
in
uence (up; vp) of the force on the model's surface.

We approximate (up; vp) as the model node with minimal distance to the point p, using
a heuristic local neighborhood search to �nd the nearest model node.

6.4 Parallel Numerical Integration

Our dynamic surface model is easiest to manipulate interactively during the �tting process
if its motion is critically damped to minimize vibrations. Critical damping can be achieved
by appropriately balancing the mass and damping distributions. Another way of eliminating
vibration while preserving useful dynamics is to set the mass density �(u; v) to zero, thus
reducing (5) to

C _q+Kq = fq: (32)

This �rst-order dynamical system governs a model which has no inertia and comes to rest
as soon as all the forces equilibrate. Although (32) is simpler to implement and numerically
more e�cient, a model lacking inertia can experience di�culty tracking moving objects if ex-
ternal forces are not persistently reliable due to weak, noisy, or missing data. Nonetheless, we
have successfully employed the �rst-order dynamic model (32) in our cardiac reconstruction
and tracking system which is presented in the next section.

We integrate equation (32) forward through time using an explicit �rst-order Euler
method. This method approximates the temporal derivatives with forward �nite di�er-
ences. It updates the degrees of freedom q of the model from time t to time t+�t according
to the formula

q(t+�t) = q(t) +�t(C(t))�1
�
f (t)q �Kq(t)

�
: (33)

In our implementation, we do not explicitly assemble and factorize a global sti�ness
matrix K as is common practice in applied �nite element analysis. Instead, we update the
nodal vectors q(t+�t)

i iteratively by computing the product Kjqj on an element-by-element
basis using the element sti�ness matricesKj. This approach makes the model �tting process
easily parallelizable.

The deformable model is implemented as a list of �nite element data structures and a list
of node data structures. The element structures contain pointers to their associated node
structures. The following actions are repeated at each time step of the model �tting process:

� For each model node, compute externally applied forces fq.
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� For each element, accumulate the internal forces on the element nodal vectors qj by
computing the product Kjqj.

� For each model node, update the position based on the applied and internal forces on
the node using Euler time integration.

These operations can be readily parallelized on a shared memorymultiprocessor (such as our
4 processor Silicon Graphics Iris 4D/340VGX workstation) by partitioning the element and
node lists into equal sized sublists according to the number of processors available. Each
processor then independently executes the loops using its assigned lists of elements and
nodes.

7 A System for 3D/4D Medical Image Analysis

This section describes an interactive system, implemented on a Silicon Graphics Iris 4D/340
VGX workstation, that uses the deformable balloon model to extract (segment), reconstruct,
and track surfaces of biological structures in volume images. The design of this experimental
system is geared towards cardiac image analysis.

The system provides views of the data and model in separate windows to facilitate the
interactive initialization and visualization of the data and the balloon model. One window
displays a 3D view of the model embedded in three orthogonal image slices of the volume
data (Fig. 5 right), which are 118 � 128 � 128 pixel CT images of a canine heart. The
user can interactively rotate this 3D view in any direction as well as change the image slice
of any image plane. In addition, the user may translate the model in any of the (x; y; z)
directions, or scale the model. This capability is useful in initializing the balloon. The other
window displays a 2D image slice of one of the three orthogonal image planes overlaid with
the corresponding cross section of the balloon model (Fig. 5 left). Note that our �nite
element surface representation makes it possible to compute any cross section of the balloon
model to obtain a continuous planar contour. The user can quickly change or scan through
the image slices of this orthogonal view or change to another orthogonal view.

The user can interact with the 3D model in the 2D image slice window by applying forces
to a cross-sectional contour as if it were a deformable contour; i.e., a snake [1]. By positioning
the mouse at some point in the window and depressing a mouse button, the mouse position
is determined and the closest model point on the cross-sectional contour is calculated. A
spring force is then applied to the balloon model along the vector from the model point
to the mouse position. The force is applied while the mouse button is depressed, and its
direction can be changed by dragging the mouse to a new position in the window. The user
can also interact with the model by positioning the mouse and depressing a mouse button
to specify a pin point. Pin constraints apply a sustained spring force to the closest model
point on the cross{sectional contour, forcing the model to adhere closely to the pin. This
mechanism allows the user to reinforce or create an object edge. Furthermore, the user may
interactively alter the surface tension and rigidity parameters �ij and �ij as well as alter the
time step, alter the balloon and image forces, and initiate a global subdivision of the model.
Once the model has been �tted to the object surface, the user may choose menu items which
compute and display surface curvature, perform enclosed volume calculations, etc.
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Figure 5: Left: Image slice window. Right: Image Volume Window.
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(a) (b)

Figure 6: YZ and XY view edge detected image slices showing initial cross sections of the
balloon model.
The edge maps are generated by the application of the 3D Monga-Deriche (MD) operator.

7.1 The Segmentation/Reconstruction Process

To initiate the surface extraction/reconstruction process, the user scans through the image
slices in the 2D image window to locate the approximate center of the object to be extracted.
This process is repeated for the two other orthogonal views. The user can observe the 3D
volume view window during this procedure to aid in determining the object center. The user
then uses the mouse to specify the initial size and location of the model in the 2D image
window (Fig. 6). The initial model will then be constructed and will appear embedded in
the image slices in the 3D window. The user can further adjust the size and location of the
model in either of the windows.

The user may specify an initial model resolution level. Typically we begin with a low
resolution model and then use the mouse to globally subdivide the model. It is also useful to
initially set the tension parameters �ij to be signi�cantly smaller than the rigidity parameters
�ij. This allows an initially coarse balloon model to stretch more easily and quickly towards
the edges of the heart. Once the model reaches the edges and the model has been subdivided,
�ij is then increased to smooth the �ner resolution model.

Once the initial model has been speci�ed, the user may begin the model �tting (Fig.
7). Before or during the model �tting procedure the user may specify any number of pin
constraints on the model. We determine by visual inspection when the �tting process is
completed. The user can quickly scan the image slices in the 2D window to ascertain how
well the cross sections of the model �t the object edges. A possible automatic stopping
criterion might monitor the average position change of the model nodes at each iteration to
assess whether the model has achieved equilibrium.

7.2 Experiments

We used the interactive system to extract and reconstruct the left-ventricular chamber from
3D CT images of a canine heart. The data set was acquired by the dynamic spatial re-
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Figure 7: Segmentation of LV.
Left: Cross{section of balloon model deforming towards LV edges, in
uenced by \pin" con-
straints and a \spring" pulling the model towards an edge. Right: Balloon model embedded
in volume image deforming towards LV edges.
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(a) (b) (c)

Figure 8: Intensity and edge detected CT image slice of left ventricle.
(a) Intensity image YZ plane slice 68. (b) Edge detected image. (c) Cross section of �tted
balloon model deforming to left ventricle.

constructor (DSR), a high speed volumetric X-ray CT scanner [25]. Sixteen volume images
representing a complete cardiac cycle were used in the experiments, with each volume image
containing 118 slices of 128�128 pixels. Each slice represents an approximately 0.9 mm thick
transverse cross section of the scanned anatomy, with each voxel representing a (0:9mm)3

cube of tissue.
Fig. 8(a) shows a sagittal (y-z plane) slice of the canine heart. In a canine heart the

valves may appear directly connected to the LV chamber and aorta, frustrating all attempts
to fully automate the reconstruction process. Our semi-automatic approach allows a user to
interact with the model as it is deforming. As mentioned previously, the user may use the
mouse to apply spring forces that pull the model away from spurious edges, or to specify
pins which constrain the model to interpolate �ducial features in the data. A few pins are
required on one or two image slices of the canine heart data to provide an e�ective separation
between the LV chamber and the aorta. The smoothness of the elastic surface prevents the
model from straying very far in neighboring image slices.

Figure 9 shows a cross section of the balloon model in an image slice deforming to �t the
edge of the ventricle. The �nal LV reconstruction is shown in Fig. 10. The initial model
consisted of 20 triangular elements. Four global subdivisions of the model were performed
during the �tting process to increase the accuracy of the reconstruction. The �nal model
contains 5120 elements and the �tting process takes on the order of 5 minutes to complete.
As the balloon model deforms in 3D, it can potentially reconstruct a globally more consistent
surface than can easily be reconstructed in serial sections using deformable contours [1]. It is
also a potentially more robust technique|missing slices do not seriously reduce the quality of
the �t|and it is far less time consuming than the traditional manual slice-editing technique.

7.3 Estimating the LV Motion

We can use the balloon model to estimate the nonrigid motion of the LV over successive
CT volumes in the cardiac cycle. We begin by �tting the model to the �rst volume in
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(d) (e) (f)

Figure 9: Intensity and edge detected CT image slice of left ventricle.
(a) Intensity image XZ plane slice 91. (b) Edge detected image. (c) Cross section of initial
balloon model. (d)-(f) Cross section of balloon deforming to left ventricle.

Figure 10: Reconstruction of Left Ventricle.
Model parameters: �ij = 0:8, �ij = 0:2, � = 111:0, �1 = 110:0, �t = 0:004.
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the sequence and use this �tted model as the starting point for the reconstruction of the
LV in the next volume. We continue this process for all 16 volumes in the cardiac cycle.
The tracking process allows the model to be \continuously" deformed by the time-varying
external data forces induced by the stream of volume images. The continuous �nite element
representation enables us to track the approximate motion of any point of the LV surface
through the cardiac cycle (not just the nodal points).

Figure (11) shows sagittal slice 67 through the 16 successive CT volumes over one cardiac
cycle. Figure (12) shows the reconstructed LV sequence. Each �tted model contains 1280
elements and the entire �tting process, including the time required to input the 4D DSR
dataset, takes only about 100 minutes to complete. This demonstrates the enormous poten-
tial advantage of the dynamic deformable model approach compared with the time required
to manually segment the LV. Once the initial 3D model has been �tted to the �rst volume,
relatively small deformations are needed to �t subsequent volumes; consequently very little
user intervention (i.e., application of pin constraints or spring forces) is necessary. Moreover,
the �tting time per volume image should decrease as images are acquired at higher rates
because the interframe motion will be smaller. This should lead to proportionally greater
reductions in e�ort when the technique is applied to future image scanners capable of greater
temporal resolution.

8 Discussion

The 3D deformable model provides an e�cient, semi-automatic segmentation technique
which reconstructs a globally coherent surface between image slices that does not su�er
from the banding artifacts often seen in surfaces reconstructed by independently contouring
each serial tomographic image. The surface model approximates the data across all the slices;
hence, it is much less sensitive to noise than locally interpolatory segmentation schemes [3].

An extracted surface model with the aforementioned properties provides many options
for quantitative analysis of the anatomic object. In cardiology, for instance, volumetric
parameters (end-diastolic and end-systolic volumes, stroke volume, and ejection ratio) are
diagnostically signi�cant, while surface curvature extrema often have anatomical signi�cance.

We know from di�erential geometry that smooth 3D surfaces are uniquely characterized
(up to rigid-body transformations) by their �rst and second fundamental forms [26]. The
parametric form of our surface model (i.e., x(u; v) = [x(u; v); y(u; v); z(u; v)]>) and, in partic-
ular, the nodal variables (21) of its �nite element representation contain all the information
needed to compute the �rst and second fundamental forms of the �tted model surface. The
intrinsic di�erential characteristics of the surface, such as the unit normal and the principal
curvatures, can be conveniently computed from this information, as can mean and Gaussian
curvatures. Furthermore, to compute the volume of the �tted balloon we can make use of
Gauss's theorem which reduces a volume calculation problem to a surface integral of the
form

	 =
Z Z
S

F (x) d�: (34)

The balloon model is composed of M surface elements de�ned parametrically within an
element in (25). Consequently, we can rewrite (34) as the sum of integrals over the surface
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(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 11: Sagittal slice of successive CT volumes over one cardiac cycle (1{16) showing
motion of LV.
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(9) (10) (11) (12)

(13) (14) (15) (16)

Figure 12: Tracking of the LV motion during one cardiac cycle (1{16).
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Figure 13: End-diastolic and end-systolic surfaces of LV during cardiac cycle.

elements as follows:

	 =
MX
i=1

Z Z
Si

F (x) d� =
Z Z
Si

F (x(�; �)) detJ d� d�; (35)

where detJ =



@x
@�
(�; �) � @x

@�
(�; �)




 is the Jacobian of transformation.
By tracking a parametric surface over time, the dynamic deformable model technique

permits a direct analysis of the estimated nonrigid motion. For instance, the variation in the
Gaussian curvature of the �tted model over time can be used to estimate the local stretching
and shrinking of the LV surface during the cardiac cycle. It should be noted, however, that
for the relatively smooth LV surface, the simple tracking scheme employed in this paper
estimates the tangential component of the surface velocity �eld much less reliably than the
normal component. A more accurate estimation of the tangential component would require
additional data or a priori information. For example, SPAMM images [27] depict transient
magnetic tags within the heart wall whose motion can be followed over several subsequent
images, providing both orthogonal components of the local velocity in the image plane [28].
Our model can readily assimilate this type of information and that available from other
sources. For instance,

� a priori information about nonrigidity could be included so that the model not only
deforms to �t the data but also preserves some basic nonrigid constraints such as
isometry or conformality [29].

� �ducial points can be extracted from the model surface and used as a guide when
�tting the model to subsequent volumes in the sequence.

� the model can be generalized so that it subdivides elements in areas undergoing stretch-
ing or bending or merge elements in areas that are less curved (cf. adaptive meshes
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[29, 30, 31]). This would enable the elements to better follow the motion of the data
points and allow for correspondence recovery.

Obviously, it is di�cult to assess the accuracy of our LV reconstruction and tracking re-
sults from a single 4D dataset. A complete error analysis would also require quantitative
comparisons against images segmented manually by experts and is beyond the scope of this
paper.

9 Summary

We proposed a 3D elastically deformable balloon model for segmentation, reconstruction, and
tracking of anatomical structures in multidimensional images. The surface of the model is
composed of C1 triangular �nite elementswhose nodal variables include position and �rst and
second parametric partial derivatives of the surface. Lagrangian equations of motion make
the dynamic model responsive to forces, derived from the 3D data, which deform its surface to
�t the data in an elegant and intuitive manner. The �tting is carried out through numerical
time-integration of the motion equations. An iterative integration method is used that
exploits the parallelism of shared-memory multiprocessor architectures. This low-latency
method supports real-time 3D display of the model as it extracts and tracks an anatomical
surface. Furthermore, the model features a recursive, global subdivision capability which
can �t a high resolution surface at low overall computational cost.

We described an experimental interactive system that demonstrates some of the capa-
bilities of our model by applying it to 4D cardiac CT data. The system semi-automatically
segments, reconstructs, and tracks the LV, allowing the user to initialize the model in the
region of interest, dynamically manipulate it during the data analysis, and alter the view-
point, shading mode, and other visualization parameters at any time. The e�ective e�ciency
gains that can accrue from a system of this sort should be even more dramatic with dynamic
imaging at higher spatial and temporal resolution. Additional re�nements will increase the
model's potential to support reliable quantitative analysis of volume, form, and nonrigid
motion for diagnostic and other medical purposes. This is a promising direction for further
work.
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