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• Central notion of deductive logic: argument form
• Argument: sequence of statements whose goal is to

establish the truth of an assertion
• The assertion at the end of the sequence is called the

conclusion while the preceding statements in an argument
are called premises

The goal of an argument is to show that the truth of the
conclusion follows necessarily from the truth of the premises.



Example
If x is a real number such that x < −5 or x > 5, then x2 > 25.
Since x2 6> 25 then x 6< −5 and x 6> 5.
We can introduce the letters p, q, and r to represent statements
that occur within our argument:

If p or q, then r .
Therefore, if not r , then not p and not q.



Example
Fill in the blanks in the argument (b) so that it has the same
form as the argument (a). Then, write the common form of the
argument using letters to replace the individual statements.
(a)

If it rains today or I have a lot of work to do, I won’t go for a
walk.
I have a lot of work to do.
Therefore, I won’t go for a walk.

(b)
If MTH314 is easy or then .
I will study hard.
Therefore, I will get an A in this course.



Solution:
1 I will study hard.
2 I will get an A in this course.

Common form of the arguments:

If p or q, then r .
q
Therefore, r .



Statements

Definition
A statement (or, proposition) is a sentence that is true or false
but not both.

Examples

1 “The area of the circle of radius r is r2π” is a statement. So
is “sin(π/2) = 0”. The first is a true statement, while the
second one is false.

2 “x + 2 ≥ y ” is not a statement; namely, for some values of
x and y , e.g. x = 1, y = 2, it is true, while for some other
values (e.g. x = −1, y = 2), it is false.



Compound Statements

• We want to build more complex logical expressions starting
with simple statements.

• We will introduce three new logical symbols (connectives):

1 ∼ (NOT)
2 ∧ (AND)
3 ∨ (OR)



• “∼ p” means “not p” or “It is not the case that p” and is
called the negation of p.

• “p ∧ q” means “p and q” and is called the conjunction of p
and q.

• “p ∨ q” means “p or q” and is called the disjunction of p and
q.

In logical expressions, the symbol ∼ is evaluated before ∧ or ∨,
since it binds statements in a stronger way than conjunction or
disjunction. (This is similar to the fact that, in arithmetic, we
evaluate multiplication before + or -)
For example, we can simplify the expression

(∼ p) ∨ q

as
∼ p ∨ q



• “p but q” is often translated as “p and q”.
For example, the statement “It is not snowing but it is cold.”
can be written as

∼ p ∧ q

• “neither p nor q” means “not p and not q”.
For instance, “It is neither snowing nor it is cold” can be
written as

∼ p∧ ∼ q



• Mathematical inequalities can be written using AND and
OR.

1 x ≤ a means x < a OR x = a.
2 a ≤ x ≤ b means a ≤ x AND x ≤ b.



Example
Suppose x is a particular real number. let p, q, and r represent
“0 < x”, “x < 3”, and “x = 3”. Write the following inequalities
symbolically

(a) x ≤ 3.
q ∨ r

(b) 0 < x < 3
p ∧ q

(c) 0 < x ≤ 3
p ∧ (q ∨ r)



Truth Values

• We defined statements as assertions which are either true
or false (but not both).

• If we have a compound statement built from simpler
statements using ∼, ∧, and ∨, how do we decide whether it
is true or false?

• For that purpose, we use truth tables.

Definition
If p is a statement, then ∼ p is false when p is true, and ∼ p is
true when p is false.

p ∼ p
T F
F T



Definition
The conjunction of two statements p ∧ q is true only in the case
when both statements p and q are true. In all other cases, p ∧ q
is false.

p q p ∧ q
T T T
T F F
F T F
F F F



Definition
The disjunction of two statements p ∨ q is false only in the case
when both statements p and q are false. In all other cases,
p ∨ q is true.

p q p ∨ q
T T T
T F T
F T T
F F F



Example
Construct the truth table for the statement

(p ∨ q)∧ ∼ (p ∧ q).

p q p ∨ q p ∧ q ∼ (p ∧ q) (p ∨ q)∧ ∼ (p ∧ q)

T T T T F F
T F T F T T
F T T F T T
F F F F T F

This statement is true when exactly one of the statements p
and q is true. For that reason, it is called the exclusive OR (or
XOR) and is sometimes written as

p ⊕ q



Example
Construct the truth table for the statement form

p ∧ (∼ q ∨ r)

p q r ∼ q ∼ q ∨ r p ∧ (∼ q ∨ r)
T T T F T T
T T F F F F
T F T T T T
T F F T T T
F T T F T F
F T F F F F
F F T T T F
F F F T T F



Logical Equivalence

• Obviously, two statements such as “It is cold and it is
snowing” and “It is snowing and it is cold”, even though
they are different as sentences, are two different ways of
stating the same thing from the logical point of view.

• This is because p ∧ q and q ∧ p have the same truth values
for the same values of p and q.

Definition
Two statement forms P and Q are called logically equivalent if
they have the same truth values for all possible truth values of
statement variables p, q, r ,. . .
We write that as

P ≡ Q



Testing Whether Two Statement Forms
P and Q Are Logically Equivalent

1 Construct a combined truth table with the last two columns
being the truth values for P and Q.

2 Check each row of the table; if the values of P and Q are
the same in each row, the statement forms P and Q are
equivalent. If there is at least one row where the values of
P and Q differ, the statement forms are not equivalent.

Example
The double negation property ∼ (∼ p) ≡ p:

p ∼ p ∼ (∼ p)

T F T
F T F

Since p and ∼ (∼ p) have the same truth values, they are
equivalent.



Example
Show that the statements ∼ (p ∨ q) and ∼ p∨ ∼ q are not
logically equivalent.

p q ∼ p ∼ q p ∨ q ∼ (p ∨ q) ∼ p∨ ∼ q
T T F F T F F
T F F T T F T
F T T F T F T
F F T T F T T



De Morgan’s Laws
Example
Show that the statement forms ∼ (p ∨ q) and ∼ p∧ ∼ q are
logically equivalent.

p q ∼ p ∼ q p ∨ q ∼ (p ∨ q) ∼ p∧ ∼ q
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

Therefore
∼ (p ∨ q) ≡∼ p∧ ∼ q

This important equivalence is called a De Morgan’s Law.
One can show similarly that

∼ (p ∧ q) ≡∼ p∨ ∼ q



Examples
Write negations for each of the following statements:
(a) The train is late or my watch is slow.

The train is not late and my watch is not slow
(b) It is cold today and it is sunny outside.

It is not cold today or it is not sunny outside.



Example
Use De Morgan’s laws to write the negation of

−3 ≤ x < 2.

Solution: The given statement is equivalent to

−3 ≤ x and x < 2.

By De Morgan’s laws, the negation is

−3 6≤ x or x 6< 2

which is equivalent to

−3 > x or x ≥ 2



Tautologies and Contradictions

Definition
A tautology is a statement form that is always true regardless of
the truth values assigned to the statement variables.
A contradiction is a statement form which is always false,
regardless of the truth values assigned to the statement
variables.

Example
Show that the statement p∨ ∼ p is a tautology and that the
statement p∧ ∼ p is a contradiction.

p ∼ p p∨ ∼ p p∧ ∼ p
T F T F
F T T F



• Notation: From now on, an arbitrary tautology will be
denoted t, and an arbitrary contradiction will be denoted c

Example
If t is a tautology and c is a contradiction, show that

p ∧ t ≡ p, p ∧ c ≡ c

Solution:

p t p ∧ t p c p ∧ c
T T T T F F
F T F F F F



A List of Useful Logical Equivalences
1. Commutative Laws

p ∧ q ≡ q ∧ p, p ∨ q ≡ q ∨ p

2. Associative Laws

(p ∧ q) ∧ r ≡ p ∧ (q ∧ r), (p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

3. Distributive Laws

p∧ (q ∨ r) ≡ (p∧ q)∨ (p∧ r), p∨ (q ∧ r) ≡ (p∨ q)∧ (p∨ r)

4. Identity Laws
p ∧ t ≡ p, p ∨ c ≡ p

5. Negation Laws

p∨ ∼ p ≡ t, p∧ ∼ p ≡ c



6. Double Negation Law

∼ (∼ p) ≡ p

7. Idempotent Laws

p ∧ p ≡ p, p ∨ p ≡ p

8. Universal Bound Laws:

p ∨ t ≡ t, p ∧ c ≡ c

9. De Morgan’s Laws

∼ (p ∧ q) ≡∼ p∨ ∼ q, ∼ (p ∨ q) ≡∼ p∧ ∼ q

10. Absorption Laws:

p ∨ (p ∧ q) ≡ p, p ∧ (p ∨ q) ≡ p

11. Negations of t and c

∼ t ≡ c, ∼ c ≡ t



Using Logical Equivalences to Simplify
Statement Forms

Suppose we want to show that

∼ (∼ p ∨ q) ∨ (p ∧ q) ≡ p

We can proceed as follows:

∼ (∼ p ∨ q) ∨ (p ∧ q) ≡ (∼ (∼ p)∧ ∼ q) ∨ (p ∧ q) (De Morgan)
≡ (p∧ ∼ q) ∨ (p ∧ q) (Double neg.)
≡ p ∧ (∼ q ∨ q) (Distributivity)
≡ p ∧ (q∨ ∼ q) (Commutativity)
≡ p ∧ t (Negation Law)
≡ p (Identity)



Conditional Statements

• A conditional statement form is a sentence of the form

“If p then q.”

• For example, one such statement is

“If 32 is a power of 2, then 32 is an even number.”

or:

“If I study hard, I will get a good mark in this course.”

• The notation for such a statement is

p → q

and p is called the hypothesis (or, the premise) and q is the
conclusion of the conditional statement form.



• Question: When is a conditional statement true?
• The only way a conditional argument can be false is if we

derive a false conclusion from a true hypothesis. In all
other case, this conditional statement will be true.

• In a way, if the hypothesis is false to start with, the truth or
falsity of the conclusion is irrelevant, so if p is false, the
conditional statement is said to be true by default.

p q p → q
T T T
T F F
F T T
F F T



Example
Construct a truth table for the statement form

∼ p ∨ q →∼ q

Solution:

p q ∼ p ∼ q ∼ p ∨ q ∼ p ∨ q →∼ q
T T F F T F
T F F T F T
F T T F T F
F F T T T T



Example
Show the logical equivalence

p ∨ q → r ≡ (p → r) ∧ (q → r)

Solution:

p q r p ∨ q p → r q → r p ∨ q → r (p → r) ∧ (q → r)
T T T T T T T T
T T F T F F F F
T F T T T T T T
T F F T F T F F
F T T T T T T T
F T F T T F F F
F F T F T T T T
F F F F T T T T



Representing If-Then as Or

• It can be shown that

p → q ≡∼ p ∨ q

Example
Consider the statement

“Either you fix my sink or I won’t pay the rent.”

Let ∼ p stand for “I won’t pay the rent.” and let q denote “You fix
my sink.”. Then, we have the statement

∼ p ∨ q.



This is equivalent to
p → q

which translates as

“If I pay the rent, then you fix my sink.”



Negation of a Conditional Statement

We prove the following logical equivalence

∼ (p → q) ≡ p∧ ∼ q

∼ (p → q) ≡∼ (∼ p ∨ q)

≡∼ (∼ p) ∧ (∼ q) (De Morgan)
≡ p∧ ∼ q (Double neg.)

• Therefore,
The negation of “if p then q” is equivalent to “p and not q”



Example
The negation of the statement

“If it doesn’t rain today, I will go for a bike ride.”

is

“It doesn’t rain today and I will not go for a bike ride.”



Contrapositive Statements
Definition
The contrapositive of a conditional statement “If p then q” is

If ∼ q then ∼ p.

Symbolically, the contrapositive of p → q is

∼ q →∼ p

Example
The contrapositive of the statement

“If I study hard, then I am doing well in the course.”

is

“If I am not doing well in the course, then I don’t study hard.”



Fact: (proved in the homework exercises)

p → q ≡∼ q →∼ p

In other words,

Any conditional statement is equivalent to its contrapositive
statement.



Converse and Inverse Statements

Definition
Given a conditional statement “If p then q.”, then

1 The converse is “If q then p.” (q → p)
2 The inverse is “If ∼ p then ∼ q” (∼ p →∼ q)

For example, given the statement

“If it doesn’t rain today, I can go for a bike ride.”

its converse is

“If I can go for a bike ride, it doesn’t rain today.”

and its inverse is

“If it rains today, I can’t go for a bike ride.”



Facts:
1 A conditional statement and its converse are not

equivalent.
2 A conditional statement and it inverse are not equivalent.
3 The converse and the inverse of a conditional statement

are logically equivalent, since they are contrapositives of
each other.



Only If and the Biconditional
Statements

Definition
If p and q are statements,

p only if q

means

“If not q then not p.”

or, equivalently,

“If p then q.”



Example
Consider the statement

The Leafs will get into the play-offs only if they win the
tomorrow’s game.

One way to rewrite that statement as a conditional one:

If they don’t win the tomorrow’s game, the Leafs won’t get into
the play-offs.

Another way to do it:

If the Leafs get into the play-offs, they will win the tomorrow’s
game.

Warning: The statement “p only if q” does not mean “p if q”.



Definition
Given statements p and q, the biconditional of p and q is

“p if, and only if q.”

and we write it as
p ↔ q

The biconditional is true only in those cases when p and q have
the same truth values.
We often write it in short as

p iff q

p q p ↔ q
T T T
T F F
F T F
F F T



• It can be shown (using truth tables, e.g.) that

p ↔ q ≡ (p → q) ∧ (q → p)

• Now that we have encountered all logical connectives that
will be used, we can classify them according to how
“strong” they are as logical operations:

1 ∼
2 ∧ and ∨
3 → and ↔



Example
Rewrite the following statement as a conjunction of two if-then
statements:

This integer is even if, and only if, when divided by 2 it gives the
remainder 0.

We can rewrite it as follows:

If this integer is even, then it gives the remainder 0 when
divided by 2 and, if this integer gives the remainder 0 when

divided by 2, then it is even.

So, if p stands for “This integer is even.” and q for “This integer
gives the reminder 0 when divided by 2.”, we have

(p → q) ∧ (q → p)

which is equivalent to

(∼ p ∨ q) ∧ (∼ q ∨ p)



Necessary and Sufficient Conditions

Definition
If p and q are statements,
(a) p is a sufficient condition for q means

“If p then q.”
(b) p is a necessary condition for q means

“If not p then not q.”
or, equivalently,

“If q then p.”

So, “p is a necessary and sufficient condition for q” means

“p if, and only if, q.”



Example
For example, the statement

If Mary is eligible to vote, then she is at least 18 years old.

means the following

The condition that Mary is eligible to vote is sufficient to ensure
the condition that she is at least 18 years old.

On the other hand,

The condition that Mary is at least 18 years old is necessary for
the condition that Mary is eligible to vote to be true.



Arguments

Consider the following sequence of statements

If the function f (x) is continuous on [a, b] then
∫ b

a f (x) dx
exists.
The function f (x) is continuous on [a, b].

∴
∫ b

a f (x) dx exists.

• The symbol∴ indicates the conclusion of a logical
argument.



We can replace the statements with variables p and q to get the
abstract form of the argument

p → q
p

∴ q

Our goal in this section will be to see how we can determine
which abstract arguments are logically sound or not and how to
prove or disprove them.



Definition
An argument is a sequence of statements. All statement forms,
except the very last one, are called premises (or, assumptions,
or hypotheses) while the last statement is called the conclusion.

The symbol ∴ is read “therefore”.

An argument is valid if, whenever all the premises are true, the
conclusion is also true.



How To Test An Argument For Validity

1 Determine the premises and the conclusion of the
argument.

2 Construct a truth table showing the truth values of all the
premises as well as the conclusion.

3 If there is a row of the truth table in which all the premises
are true while the conclusion is false, the argument will be
invalid. If, for every row where all the premises are true, the
conclusion is also true, the argument will be valid.



Example
Show that the argument

p → q∨ ∼ r
q → p ∧ r

∴ p → r
is invalid.

p q r ∼ r q∨ ∼ r p ∧ r p → q∨ ∼ r q → p ∧ r p → r
T T T F T T T T T
T T F T T F T F F
T F T F F T F T T
T F F T T F T T F
F T T F T F T F F
F T F T T F T F T
F F T F F F T T T
F F F T T F T T T



Example
Show that the following argument is valid

p ∨ (q ∨ r)
∼ r

∴ p ∨ q

p q r q ∨ r p ∨ (q ∨ r) ∼ r p ∨ q
T T T T T F
T T F T T T T
T F T T T F
T F F F T T T
F T T T T F
F T F T T T T
F F T T T F
F F F F F T



Modus Ponens and Modus Tollens

• An argument with two premises and a conclusion is called
a syllogism. the first premise is called a major premise,
while the second premise is called the minor premise.

• Modus Ponens is a syllogism of the form
p → q
p

∴ q



• Modus Ponens is a valid argument form:

p q p → q p q
T T T T T
T F F T F
F T T F T
F F T F F



• Modus Tollens is an argument of the form
p → q
∼ q

∴ ∼ p

• It can be shown (using truth tables, e.g.) that Modus
Tollens is a valid argument form.

Example
An example of an argument in the Modus Tollens form is:

If my employee evaluation is good, I will get a raise.
I won’t get a raise.

∴ My employee evaluation is not good.



Example
For the following premises find the conclusion which will make it
valid and justify the reasoning

If this figure is a triangle, then the sum of its angles is 180◦.
The sum of the angles of this figure is not 180◦.

∴

Solution: The conclusion which will make the argument valid is

This figure is not a triangle.

The justification is provided by Modus Tollens.



More Valid Argument Forms (Rules of
Inference)

1. Generalization: this rule can have two different forms
(a) p (b) q

∴ p ∨ q ∴ p ∨ q

2. Specialization: again, this rule can have two forms

(a) p ∧ q (b) p ∧ q
∴ p ∴ q



3. Elimination:
(a) p ∨ q (b) p ∨ q

∼ q ∼ p
∴ p ∴ q

Example
For example, suppose we know that

x − 5 = 1 or x + 2 ≤ 3

and
x > 2

Then,
x + 2 6≤ 3

∴ x − 5 = 1

by the Elimination Rule.



4. Transitivity:

p → q
q → r

∴ p → r

Example

If I go to the movies, I won’t finish my assignment.
If I don’t finish my assignment, my grade will drop.

∴ If I go to the movies, my grade will drop.



5. Proof by Division Into Cases:

p ∨ q
p → r
q → r

∴ r

Example

If I get a Christmas bonus, I will buy a computer.
If I sell my car, I will buy a computer.

I will either get a Christmas bonus or sell my car.

∴ I will buy a computer.



Example
You are about to leave for classes and discover that you don’t
have your glasses. You know that the following is true:
(a) If my glasses are at the kitchen table, then I saw them at

breakfast.
(b) I was reading the newspaper in the living room or I was

reading the newspaper in the kitchen.
(c) If I was reading the newspaper in living room, then my

glasses are on the coffee table.
(d) I did not see my glasses at breakfast.
(e) If I was reading a book in the bed, then my glasses are on

the nightstand.
(f) If I was reading the newspaper in the kitchen, then my

glasses are on the kitchen table.
Where are the glasses?



Solution: We start by introducing variables for individual
statements:

p: My glasses are on the kitchen table.
q: I saw my glasses at breakfast.
r: I was reading the newspaper in the living room.
s: I was reading the newspaper in the kitchen.
t: My glasses are on the coffee table.

u: I was reading a book in the bed.
v: My glasses are on the nightstand.



Then, the premises of the argument become:
(a) p → q
(b) r ∨ s
(c) r → t
(d) ∼ q
(e) u → v
(f) s → p

Let’s see what conclusion can be derived using the rules of
inference we have learned so far.



1.
p → q by (a)
∼ q by (d)

∴ ∼ p by Modus Tollens

2.
s → p by (f)
∼ p by (1)

∴ ∼ s by Modus Tollens



3.
r ∨ s by (b)
∼ s by (2)

∴ r by Elimination

4.
r → t by (c)
r by (3)

∴ t by Modus Ponens

Therefore, t is true and the glasses are on the coffee table.



Fallacies

• Fallacy is an error in reasoning that leads to an invalid
argument.

• Common errors:
1 assuming what is to be proved without deriving it from the

premises.
2 jumping to a conclusion without using any of the valid

inference rules
3 converse error
4 inverse error



Converse Error

Converse error results from an invalid argument form

p → q
q

∴ p

This argument is erroneous since it would be true if the
converse statement

q → p

was true instead of the original premise p → q.



Inverse Error

Inverse error results from an invalid argument form

p → q
∼ p

∴ ∼ q

This argument is erroneous since it would be true if the inverse
statement

∼ p →∼ q

was true instead of the original premise p → q.



Contradictions and Valid Arguments

Contradiction Rule: If one can show that the assumption that p
is false leads logically to a contradiction, then one can conclude
that p is true.

• We are going to prove that the argument

∼ p → c
∴ p

is valid.

p ∼ p c ∼ p → c p
T F F T T
F T F F F



Example
There is an island inhabited by two types of people: knights
who always tell the truth and knaves who always lie. You visit
the island and are approached by two natives who make the
following statements:

A says: B is a knight.
B says: A and I are of opposite type.

What are A and B?



Solution: We will show that both A and B are knaves, using the
contradiction rule.

Suppose A is a knight.
∴ What A says is true. (by definition)
∴ B is a also a knight. (A’s statement, which is true)
∴ What B says is true. (by definition)
∴ A and B are of opposite type. (B’s statement, which is true)

This is a contradiction, since we derived that A and B are of
opposite type, yet they are both knights.

∴ A is not a knight (Contradiction Rule)



∴ A is a knave (elimination; A is either a knight or a knave)
∴ What A says is false.
∴ B is not a knight.
∴ B is also a knave. (elimination)
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