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1 Introduction.

The ability to build plans - sequences or structures of the actions which transform an initial
state of the world into the goal state is the necessary condition of intellectual behavior. For
instance, we may consider a group of mobile robots in an environment. FEach of them
to achieve its aims should be able to plan its activity and to reason about result of joint
actions.

The development of the logical formalizations of the reasoning about concurrent actions
is important also because it is logical approach that will permit to unify the strategic
analysis of the players’ different interests, which is a part of the traditional game theory, with
the analysis of the information exchange, in particular, with the analysis of argumentation,
used by decision makers to overcome a conflict situation. This unification should encounter
new perspectives for the research.

We proposed simple logical framework to represent knowledge about simultaneous ex-
ecution of actions. As the starting point we used the situation calculus [1] which is the
most known formalism for reasoning about sequential actions. Its reputation is fine owing
to the clarity and the simplicity of the formalism. The negative attitude to the situation
calculus in the artificial intelligence community was caused mainly by difficulties of dealing
with concurrent actions/changes. We solved the following problem. How should causal
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rules refer to simultaneous actions so that if we knew that some agents perform the group
of actions which includes unspecified one, the appropriate causal rule nevertheless would
be fired to derive default conclusions 7 Such conclusions will agree with the intuition that
the engagement in an activity (simultaneously with other actions) whose influence on the
world is unknown, by default should not prevent us to make inferences about the results
of other actions. These inferences will be defeasible and can be withdrawn in the presence
of new causal rules with contrary specifications. For instance, in accordance with some
ideological, teological or social doctrines all of us are unconsciously involved in a lot of
activities. Nevertheless, it does not preclude us to reason about ourselves everyday actions.

The approach we proposed put no restrictions on how many such actions unspecified by
causal rules are performed, and moreover, its flexibility is achieved without the complica-
tions of the causal rules. Our solution gives the possibility to derive easily new values of all
properties of the world which can change after actions will be executed, in particular, values
of those properties which were not influenced by actions. We stuck to the circumscription
to deal with the frame problem. Our method solved also the ramification problem, because
a theory may includes a number of static constraints between the properties of the world.
As a consequence, all implicit results of actions can be found without applications of causal
rules, i.e. without appeal to explicit dynamic constraints, but only from static constraints.
We indicated also a not complicated way of coping with qualification problem, which is the
problem how all sufficient preconditions for each action could be enumerated concisely.

Because this abstract is the excerpt from a paper, we would like to clarify the terminol-
ogy we will keep in mind. This terminology originated from the ontological commitment to
consider actions in the world from a finite automaton’s point of view. In brief, we studied a
multi-head, one-way deterministic automata with a finite number of states [2]. We adopted
the following notions:

e input symbol on an automaton’s input tape we named early and below as the action;

e vector of input symbols is a group of concurrent actions, equivalent term - an
operator;

e state - circumstance, state-of-affairs, a set of properties whose status are considered
as actual. The important difference between usual automaton’s notion of state and
the notion which is used in logics of actions is that for the state transition function
of an automaton each state is indivisible entity. To the contrary, to reason about
results of the actions each state is considered as a vector of boolean values such that
each component corresponds to the value of a property. Because properties values are
fluently alternate in dependence of actions on the input tape of an automaton, they
named as the fluents in the situation calculus. This point of view allow to define the
concept of the complexity of the frame problem solution. For this reason, we think
that notion of state is very important (see the Appendix 1).

e function of transitions between states corresponds to a set of causal rules sup-
plemented by static constraints on fluent values. Because we limit ourselves in this
paper by consideration of deterministic automata only we will assume in the sequel
that all actions have deterministic effect on the world. However, we expect that this
restriction can be easily relaxed;

e move is an auxiliary temporal notion to enumerate in a sequence those operators
which were accepted by an automaton. This notion is traditionally referred as a
situation.



Thus, from the one hand, we distinguished between a state as a nontemporal entity, and a
situation as an indicator of current position in an ordered sequence of activities, and, from
the other hand, we distinguished between an ordinary, single action and an operator as a
group of ordinary actions jointly performed.

It worth to mention, we followed a certain tradition in our terminology, whose sources
will be specified in section 2. After a brief introduction of sorts for object variables, function
and predicate symbols we demonstrate in section 3 our method of axiomatizing concurrent
actions. For expository purposes we use slightly modified variant of the Yale shooting
example [3]. We will focus our attention only on reasoning forward in time. In subsection
3.1 we outline the circumscriptive policies, subsection 3.2 contains hints how axioms should
be formulate in general case. Section 4 compares our approach with related works. The
last Section 5 notes some possible extensions and summarizes our paper.

2 Preliminaries.

Our approach based upon the idea of J.Weber [4]. He proposed to represent the dynamic
component of the situational calculus ontological scheme by two distinct ontological entities.
The first of them is a single action, second one is an operator. Roughly speaking, an operator
is simultaneously performing actions, however it is a first class entity. Taken this step we
can drastically simplify an axiomatization, because under this point of view on dynamics
there is no need to add axioms about the inheritance of the properties of single actions by
the operator which is composed from them. The operator is related with its compound
actions by the binary predicate T'ype. Thus, J.Weber proposed to detach the type of an
action from its name and make it into a predicate.

The predicate T'ype will occur in causal rules and in the so-called scenario. The scenario
will contain axioms describing which propositional fluents hold and which do not hold in the
initial situation. It also will include axioms for defining each particular operator from the
sequence of operators which are performed. To prevent undesirable initiations of causal rules
Type should be circumscribed. Without such circumscription it would be possible for some
of the models to permit superfluous extensions of the predicate. After the circumscription
each operator is composed only from the actions explicitly mentioned in the scenario.

The traditional axiom of inertion, proposed by J.McCarthy [5, 6], and his approach
of minimizing abnormality to deal with the frame problem applies also to causal rules
with operators. However, [4] noted that the circumscriptive policy known for him did not
provide a correct solution to the classical Yale shooting problem (Y SP) [3]. He coped with
the frame problem using a method of L.Schubert [7], that is by adding several explanation
closure arioms. But this method is applicable only in the presence of complete causal theory
about the world. Moreover, the complexity of this solution is greater than the complexity
of circumscriptive solution. For these reasons, we believed it worth to find such appropriate
circumscriptive policy to deal with frame problem in the situation calculus with concurrent
actions that is not subjected to Y SP.

It turns out that the circumscriptive policy proposed by A.Baker [8], A.Baker&M.Gins-
berg [9] as a solution of (Y .SP) can be adopted for our purpose. Their solution to the
Shooting problem for standard situation calculus based on the idea that whether a situation
is abnormal should not depend upon historical information about how the situation arose.
We transformed their approach to situation calculus with operators constrained by action
types. It was the paper [9] that first introduced very important notion of state and their
method was named as state-based minimization approach. By following them we take



V.Lifschitz’s [10] suggestion into consideration. He added to the persistence axiom an
unary predicate F'rame that singles out so-called frame fluents to which the inertia will be
limited.

The paper [11] also dealing with the representation of concurrent actions inside the
framework of the situation calculus was issued practically simultaneously with the first
version of our paper [12]. However, it seems that in contrast to the approach of [11],
our method have some additional advantages such as flexibility and universality. We will
perform thorough comparison of both alternatives in the section 4. We would like to
emphasize here only that their circumscriptive policy for minimization abnormality also
could be used for our case, because it solves Y'S P. Nevertheless, we look with favor on state-
based minimization approach, due to importance of the notion of state. We revealed this
importance for ourselves when we formulated the complexity criterion of the frame problem
solution (see Appendix 1). In addition, we believed this notion to be an improvement of
the initial ontological scheme of the situation calculus.

3 Language and Axioms

We will consider a subset of many-sorted first order language'. We use object variables of
five sorts: for situation (s), for truth-valued fluents (f), for operators (o), for actions (a),
and for circumstances (¢) (or, equivalently, - states). Each state is a particular set of holding
fluents, i.e. it designates a mapping from fluents to truth values. The object constants in the
example are: the initial situation Sp; fluents Loaded (gun) and Alive (Fred); circumstances
Cy, Cq, U3, C4 for the different combinations of fluents values; two particular operators
which will be performed - O and Oy; and actions Shoot, Trigger, Aim, Wait.

We use the ordinary situation-valued function symbol Res having operator term and
situation term as arguments and the new unary function symbol St that has a situation
as an argument and relates it to the corresponding state. The standard predicate constant
symbol Holds(f,s) asserts that a property f holds in a situation s. The binary predicate
constant symbol T'ype(o,a) mean that an operator o contains, in particular, an action a.
Additionally, we use the unary predicate constant symbol Frame(f) to express that f
belongs to the frame, and the tern ary predicate constant symbol Ab(f, o0, ¢c) to assert that
a fluent f is abnormal after the performance of an operator o in a state c.

The predicate Frame singles out primary fluents to which the inertia will be limited.
This fluents are independent by analogy with coordinate frames [10]. These fluents do not
change after actions which do not have the direct effect on them. All other fluents are
secondary, i.e. their values are determined by those primary fluents which occur in static
constraints.

As usually, whenever some circumscriptive policy is formulated we assume that sort and
arity of each predicate variables exactly correspond to sort and arity of the initial predicate
constant. We prove further that after the sequence of the circumscriptions of our initial
theory we obtain a first-order theory.

We divide axioms on several groups in accordance with their intention. We will discuss
general case and simultaneously the particular example.

The first group contains the only non-monotonic frame axiom with the predicate of
abnormality with respect to a state:

Frame(f)&—Ab(f,0,5t(s)) D (Holds(f,s) = Holds(f, Res(o,s)) (1)

1Variables begin with lower-case letters. Constants, function symbols, predicate symbols begin with
upper-case letters. Unbound variables are universally quantified.
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This axiom says informally, that values of those primary properties f which are not abnor-
mal in the state related with a current situation s will persist in the next situation that
occurs as a result of performing an operator o. Roughly speaking, this axiom will force the
persistence of as many properties as possible after the circumscription of the predicate Ab.

The second group is formed by axioms which describe the frame fluents. In our example
we consider the following axioms:

Frame(Alive) (2)
Frame(Loaded) (3)

The notion of frame was restored by Lifschitz in [10] to allow principal interpretations

of propositional fluents. Under this interpretation, propositional fluents are regarded as a

subsets of the space of situations so the domain of propositional fluents is a power set of the

domain of situation, and Holds(f,s) is represented by the relation of membership s to f.

It is such kind of interpretations that was intended for use, but omitting predicate Frame

from (1) in the earlier versions of situation calculus resulted in paradoxical conclusions.
The third group includes the following "existence of states” axiom:

VS{((Cl St(s)) = Holds(Alive, s)& Holds(Loaded, s))
&((Cy = St(s)) = ~Holds(Alive, s)& Holds(Loaded, s))
&((C5 = St(s)) = Holds(Alive, s)& ~Holds(Loaded, s))
&((Cy = St( )) = —Holds(Alive, s)& ~Holds(Loaded, s))}

(4)

Further we will formulate an axiom that stipulates uniqueness of names for fluents (i.e.
Alive # Loaded). Axiom (4) ensures that for each of the four possible combinations of
the fluent values, there is the unique corresponding circumstance (or state) C, such that
for each situation s if just that combination takes place at s then St() maps s to the
state C. The reasons for formulation such kind of axiom were stressed by [8, 9]. It is
this axiom that permits state-based minimization approach to overcome Y .SP. But unlike
earlier formulation, we explicitly introduced object variables for circumstances, thus reifying
those sets of fluents which holding in some situation make up a state. This axiom can be
formulated alternatively in the second-order language [10, 13].

The forth group of axioms contains causal rules with predicate T'ype, that constrains
operator variable of each causal rules. In our example we use one causal rule (note that we
intentionally omit action type Shoot):

Holds(Loaded, s) & Type(o, Trigger) & Type(o, Aim) O —=Holds(Alive, Res(o,s)) (5)

The fifth group is comprised by unique names axioms:

Wait # Shoot # Avm # Trigger, (6)
Ol 7£ 027 (7)
Aliwve # Loaded (8)

where (1 and O, - are particular operator constants from the scenario. We do not formulate
domain-closure axiom for fluents, i.e. f = Alive V f = Loaded, because an inertion is
applicable only to fluents included in the frame.

And finally, the sixth group of axioms is formed by scenario’s assertions and, conse-
quently, is specific only for the example under consideration:

Holds(Alive, Sy) (9)
)



Holds(Loaded, So) (10)
Type(Oy, Wait) (11)
Type(Oz, Trigger) & Type(Oq, Shoot) & Type(Oy, Aim) (12)

3.1 Circumscriptive policies and effects of circumscriptions.

As usually (see [14, 15]), we will denote by Circum(A(P, Z); P; 7Z) the global circumscription
of the predicate P in the formula A(P,7) with 7Z allowed to vary to represent the formula:

A(P,Z) & —-3p,z (A(p,z) & p < P) (13)

where z is a list of predicate and/or function variables whose arities equal to arities of
corresponding letters from the tuple Z, and p < P denotes

Va(p(z) 5 P(x)) & =32(P(z) O p(z))

We remind that the corresponding form of pointwise circumseription
A(P) & =32,z [P(z) & A(Ay(P(y)& = # y), 2)]

is denoted by Cp (A(P, Z); 7).

We remind also that [15] defined the pointwise circumscription of P in A(P,Z) with the
predicate 7 allowed to vary only on the part V of its domain, where V is a A-expression
AuV (u) of the same arity as Z(u), which gas no parameters and contains neither P nor Z:

A(P) & =3z, z [P(z) & Yu(=V(u) D z(u) = Z(u)) & A(My(P(y)& = # y), 2)].

In the sequel we will need in more flexible circumscription policies that also were defined
by [15]. Let V be A-expression AzuV (x,u) whose arity equals the sum of the arities of P and
Z, and V; is the function AuV (z,u) which maps every value of z into the set of all values
of u satisfying V(z,u). Then, whenever 7 may vary only on that part V, of its domain
which depends of the point x where P is minimized, this circumscription is denoted by

Cp (AP, Z2); Z]V) ):
A(P) & =3z, z [P(x) & Yu(=V, D z(u) = Z(u)) & A(Ay(P(y)& = # y), 2)]. (14)

If instead of Z we may vary some values of the predicate P itself while minimizing its
value at some point, then this pointwise circumseription of P in A(P) with P itself allowed

to vary on the domain V, is Cp(A(P); P/V):
A(P) & =3z, p [P(x) & =p(e) & Yu(=V; D p(u) = P(u)) & A(p)]. (15)

Here p is a predicate variable similar to P, V is a A-expression AzuV (z,u) which has no
parameters and does not contain P. The second term of (15) says that if P(x) is true it is
impossible to change its value to false without losing the property A(P), even if the values
of P will change arbitrary on the domain V.

We should circumscribe Frrame with Ab varying, in accordance with (13),i.e. Frame is
minimized at a higher priority than Ab. This is because we prefer to regard of the set of
primary fluents (the extent of the predicate Frame) as already fixed when the inertion of
fluents is described [10, 13, 6]. Afterwards, we will pointwisely minimize T'ype in the theory
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resulted from the above circumscription in accordance with the policy defined in (15), with
Type itself allowed to vary anywhere. And finally, we will minimize Ab in the resulting
theory with Holds varying. Formally,

Circum(A; Frame; Ab) = A', (16)
Crype (A'; Type/Vy) = A", (17)
Circum(A"; Ab; Holds), (18)

where A is the conjunction of the axioms (1)—(12), and V; is true.

The circumscription of predicate T'ype eliminates all unforeseen characteristics of oper-
ators. After this circumscription, group of actions that is referred to as the operator O,
includes neither of the actions T'rigger, Shoot, Aim. In addition, group of actions that is
referred to as the operator Oy does not contain the action Wait. We could not be sure that
the performance O; will not activate the causal rule (5) if we were not to make the extent
T'ype more exact.

The effect of circumscriptions (16)—-(18) is equivalent to adding of the following formulas
to the theory (1)—(12):

Frame(f) = [f = AliveV f = Loaded] (19)

Type(o,a)=[o=01 & a=WaitVo= 0, & a =Trigger Vo= 0y & a =Aim V
0= 03 & a = Shoot] (20)

Ab(f,0,¢) = [f = Alive & 0 = 0y & ¢ = (4] (21)
As the result we have:
A" = Circum(A; Frame; Ab) = A & (19), (22)
A" = Crype(A'; Type/ Vi) = A" & (20), (23)
Circum(A"; Ab; Holds) = A" & (21) (24)

To prove (22) we can perform an well-known transformation for the elimination of
varying predicate at the cost of introduction second-order formulae with its subsequent
simplification which result in the ordinary circumscription of Frame in the conjunction
of (2) and (3) (see [14, 16]). The proof of (24) can be obtained as a direct generalization
of [8, 10] and have been given both in the preliminary version [12] and in the full version
of this paper. This proof shows that we actually coped with Y'SP. To prove (23) we can
use the similar arguments taken into account that the minimality should be considered
pointwisely.

3.2 Remark and addendum to axiomatics.

We intentionally chose very simple example to demonstrate that our approach is Y .S P-free.
However, if one needs to axiomatize more complicated domains he/she will encounter the
complicated issue of concurrent actions which cancel out each other’s effects. We propose
to classify the concurrent performance of actions according to this issue:

e All actions are simple (i.e. each single action produce its own effect) and each one is
independent of others.



e Some actions have cooperative effect, which they could not produce if they were to
perform one by one (for instance, actions T'rigger and Aim in (5) ), but neither
actions cancel out each other’s effects.

e Some actions are simple, some actions have cooperative effect, and additionally there
is an action (a group of actions) such that would it be performed either another action
could not be performed concurrently or some group of actions could not produced its
normal effect.

It is not hard to imagine a lot of real conflict situations which can justify these cases.

The main advantage of our method of reasoning about concurrent actions is that we can
represent each of the cases above very naturally. So, suppose that we know about a simple
action that it can be executed only if some other actions {4y, ..., A,} will not be executed
concurrently. Then we simply have to add conjunctively to the left side of the causal rule
formulas =T'ype(o, A;) (i = 1,..,n), to say explicitly what actions the performing operator
should not contain. Note that in the paper [11] this issue is much more complicated (see
section 4).

As an additional argument of the flexibility and universality of our representational
apparatus we would like to show that all sufficient preconditions for each action could be
characterized without great complications. Because the modified Y SP story we used for
expository purposes is too simple to demonstrate how the qualification problem can be
solved, we will discuss further another version of the story.

Let us assume that instead of axiom (10) the scenario will include the following axiom:
—Holds(Loaded, Sp). In that case, the operator O even if it would be performed at first,
did not fired the causal rule (5), and hence, the conclusion —Holds(Alive, Res(O3, Sy))
could not be drawn. It is obvious, that the circumscription of the predicate Ab(f, 0, St(s))
in that theory is equivalent to the assertion about emptiness of its extent. Nevertheless, as
following from the axiom of inertion, we could derived

—Holds(Loaded, Res(04, Sy)),
Holds(Alive, Res(Os, S0))).

If we will look at these formulas carefully, we will see that they are meaningless: they
say about the values of certain fluents at the situation which have been resulted from the
execution of the operator Oy, but this operator cannot be executed due to the absence of its
preconditions and, consequently, the situation its performance have been resulted in does
not exist.

To eliminate such "ghost” situations several authors have introduced the binary predi-
cate Poss with an action and a situation as its arguments [13, 17]. We adopt this idea, but
to conform with concurrent actions we will use the binary predicate symbol Possible(a, c)
having action term and state term as arguments. The predicate Possible(a, St(s)) asserts
that at a state St(s) corresponding to a situation s there are the prerequisites to perform
an action a. Now to formulate effect axioms, each causal rule should be split along the
implication sign:

Holds(Loaded, s) D Possible(Trigger, St(s)) & Possible( Aim, St(s))

Possible(Trigger, St(s)) & Possible( Aim, St(s)) & Type(o, Trigger) & Type(o, Aim)
D —Holds(Alive, Res(o, s))



In addition, we have to include in the theory a new group of axioms. Each axiom from this
seventh group will assert that actions which have not been mentioned in causal rules can
be performed unconditionally:

Possible(Shoot, St(s))

Possible(W ait, St(s))
And, finally we have to rewrite the axiom of inertion:

[Type(o,a) D Possible(a, St(s))] D

Frame(f) & —Ab(f,0,5t(s)) & D (Holds(f,s) = Holds(f, Res(o,s))

It is not hard to see that such axiom will allow to derive facts about new situations only if
all actions composing an operator are individually possible.

We will circumscribe Possible pointwisely in the theory A” resulted from (23) with
Holds allowed to vary on the domain Vo = Af,s'(s" # s), which depends from the point
(a,St(s)) of minimization, i.e. we may vary Holds only at those situations s’, which
differ from situations s corresponding to the current state St(s). Note that such cir-
cumscription policy was defined in (14). If we denote the effect of the circumscription
Cpossine (A" Holds/V3), as the theory A" then Ab have to be circumscribed in A" with
Holds varying.

4 Discussion.

One could attempt to incorporate concurrent actions into the situation calculus by means
of the function Compose ( from action * action into action ):

Holds(Loaded, s) D —Holds(Alive, Res(Compose( Aim, Trigger), s))

A similar approach is used in [18, 19]. But in that case one need to consider a great deal
of new causal rules, which specify, for example, combinations of the actions that affect
something in the world with an action that does not affect anything. In the one imaginary
extension of Shooting story there can be many spectators watching the Fred’s murder. No
watch action affects anything. But to take into account the results of all composed actions,
a lot of new causal rules should be formulated. Otherwise intuitively expected conclusion
could not be drawn.

Although Schubert [7] composed actions ay, as by function Costart(ay, az), his method
avoids this pitfall, because he can easy prove fluents persistence without circumscription.
To do that job he formulated so-called explanation closure axioms. But tracking change in
his framework is overly complicated because he added to the left side of effect axioms (causal
rules) predicate compatible(a, p), where a is an action and p is a plan (actions combination).
That will hinder default conclusions about performing of unspecified action from being
inferred. Our modification of Y.SP shows that appropriate conclusions nevertheless can be
drawn despite the causal rule (5) does not mention Shoot at all. Moreover, it is unclear
how to cope with qualification problem inside his framework. The advantage of Schubert’s
method is the easy of explanation generation. But this research avenue is beyond the scope
of our work.

The method for reasoning about concurrent actions was proposed in papers [20, 11].
Their approach is similar to our one to some extent, because it is based also on the situation
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calculus. Authors used the binary predicate In(a,{Ai,...A,}) to express that primitive
action a belongs to global action {A;,...A,}. This predicate plays the same role as our
predicate T'ype. Because global actions which will be executed are described by explicit
enumeration of what primitive actions they contain as the components, there is no need to
circumscribe In.

After the closer comparison of two approaches it turns out that for [11] the issue of
concurrent actions which cancel out each other’s effects is much more complicated then for
us. They have to ensure that compound actions inherit the effects of their components [21].
Moreover, they concerned themselves with the problem how to take into account the fact
that for an action Ajg to override the effect of some global action {A;, Ay} itself must not
be overridden by another action Ass. We have achieved the same result without compound
actions, because we divide the dynamic component of the situational ontology on two
distinct primitives.

Their causal rules are similar to our ones with the only exception. To forbid combina-
tions of the interfering actions, at the left sides of their rules have to occur (under negation
sign) the ternary predicate Canceled(gi, g2, s). This predicate is true if "normal” effect of
a global action g is cancelled out by some other actions from a global action ¢;. This
representational mechanism have several shortcomings. First, as was mentioned by the
authors in [11] they have to use sophisticated nonmonotonic tactics to take into account
interactions and/or interference between actions. Second, let us suppose that we would like
to formulate the causal rule for joint actions (such as our (5)) with cooperative effect. If
we will follow their methodology, we have to write something like

VsgHolds(Loaded, s) & In(Trigger,g) & In(Aim,g) &
—Canceled(Trigger,g,s) & =Canceled(Aim, g,s) D ~Holds(Alive, Res(g, s))

As the result of the circumscription of C'anceled we find two different minimal models. At
the first model: Canceled(Trigger,{Trigger, Aim}) is true; at the second model
Canceled(Aim,{Trigger, Aim}) is true. This situation is fraught with unpleasant
consequences: they might draw undesired conclusions. Our solution avoids these drawbacks
and, moreover, it is more simple, because we does not need in the auxiliary predicate

Canceled.

5 Conclusion.

We proposed the logical theory of concurrent actions that allow to draw conclusions about
the execution of actions not all of which are specified in the causal rules. We coped with the
fluent oriented frame problem and the complexity of our solution is less than the complex-
ity of monotonic solution. We proposed the monotonic way to tackle the action-oriented
frame-problem, but it seems that the complexity of our solution is lower than the com-
plexity of the nonmonotonic method developed in [11]. We believed that the problem of
complete characterization of the preconditions ( qualification problem) can be overcome by
the circumscription of the predicate Possible. Our approach also dealt with ramification
problem), because implicit effects of actions can be found from constraints on the values of
fluents. This effect is achieved due to varying Holds when Ab is circumscribed.

In our opinion, the concurrent actions representation will be used for reasoning about
changes extended in time because it may happen that continuous changes are overlapped at
a time [22]. It is important to note that correspondence between the situation calculus with
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action types and the explicit time-line temporal calculus established by Weber [4] facilitates
future progress.
One of the future extensions may allow action types hierarchy, for example

Yo(Type(o, Drive) D Type(o, Move))

A matter of prime concern is how to compute circumscription algorithmically. This point
will be addressed in our future works.
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Appendix 1.

We can consider a state as a boolean vector, whose dimension equals the number of
fluents | F' |. Let C(s) = (v1(s),...,vjr|(s)), where s is a situation, be the state which
corresponds to a situation s, and vi(s),...,v|r|(s) be the values of primary fluents in s
(vi(s) € {0,1}, for all 7). Let us assume that the result of execution of an action a in a
situation s is new situation s’ = res(a, s).

It is clear that there is unique boolean vector p(s) = (pi(s),...,pr|(s)) such that
C(s") = C(res(a,s)) = (vi(s) + pi(s) (mod 2),...,vp((s)) + pir|(s) (mod 2))

Thus, the boolean vector p(s) completely characterize the situation which result from the
execution of an action a in the initial situation s. Moreover, for each 7 if :th component of
this vector p;(s) is 1, then ith fluent change its value, otherwise (p;(s) = 0) this fluent is
not affected by the action a.

To solve the fluent-oriented frame problem % one should determine ”transformation
vector” p(s) for each action by adding to the theory several new axioms. Let k be a least
natural number such that 2% >| F' |. We can redefine boolean vector p(s) as a boolean
function having & variables (we will put values in the range between pjg|(s) and pyx(s)
arbitrary, for instance, let all these values be 0).

The main statement of this appendix is that there is 1-1 correspondence between the way
of frame problem solution and the way this boolean function is defined. Because a boolean
function can be equivalently defined by different ways, there are a lot of approaches to cope
with the frame problem. As the first idea, we can try to construct disjunctive normal form
for this function, i.e. we will explicitly enumerate only those k-tuples of boolean values
pi(s) (2 = 1,...,2%) where the boolean function p(zy,..., ;) equals 1. Then such way of
determination of the function p(s) corresponds to circumscriptive approach. Alternatively,
if we will give this function pointwisely enumerating all its values in sequence, then we will
stick to the initial monotonic solution of the frame problem proposed in [1]. The further
generalizations are straightforward.

From the considerations above follows the definition: one solution of the frame problem
has lower complexity then another solution iff the boolean function p(z1,...,x) that cor-
responds to the first solution has less boolean connectives (variables,...) than the boolean

function that corresponds to the second solution.

2the distinction between terms fluent-oriented and action-oriented frame problem was introduced in
F.Lin&Y .Shoham’s paper [11]
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